Feb 252016
 

SolareMarocco2

Il sole non manca mai, lo spazio neanche e in questo caso pure la volontà politica ha fatto la sua parte. Sto parlando del Marocco, una delle terre più a ovest del continente africano, affacciato sull’Oceano Atlantico e caratterizzato da un territorio vario e un clima che passa da mediterraneo a desertico.

E’ proprio in una ampia zona desertica vicino alla città di Ouarzazate che è appena stato inaugurato il più grande impanto solare termico del mondo.

L’obiettivo dichiarato dal governo del Marocco, è quello di raggiungere entro il 2020 il 42% dell’energia nazionale da fonti alternative riducendo drasticamente la dipendenza del paese dai combustibili fossili e dagli altri paesi. Inoltre, l’obiettivo che il Marocco si pone è ancora più ambizioso, cioè raggiungere un abbattimento delle fonti inquinanti del 32% entro il 2030.

470880973EM048_Massive_Sola

L’impianto che sorge in una immensa vallata dello sterminato deserto sahariano utilizzerà differenti tecnologie per produrre energia; un sistema a specchi parabolici da 300 megawatt, un sistema a concentrazione solare da 160 megawatt e una seria di collettori parabolici a cilindro da 150 megawatt.

Il sistema, accumula il calore solare durante la giornata, quando il sole, sempre presente a queste latitudini, infuoca l’arida zona desertica. Durante la notte questo calore accumulato, viene convertito in energia attraverso l’uso di turbine a vapore. Si calcola che l’impianto produca energia per circa 20 ore al giorno e rappresenta solo l’inizio di un immenso progetto energetico che mira a rendere il Marocco totalmente indipendente energeticamente.

SolareMarocco3

Il mega impianto è stato realizzato della compagnia saudita ACWA Power, specializzata nella costruzione di impianti del genere.

GUARDA I VIDEO:
https://www.youtube.com/watch?v=8GFsg34zsLU
PUOI LEGGERE ANCHE:
SCARICA L’ARTICOLO:
Feb 162016
 

Torre02

Il mega aeroporto di cui ho parlato qualche giorno fa, che si sta realizzando nel cuore della città europea di Istanbul, avrà firme di eccellenza. Infatti, il Ministero delle Infrastrutture turco, ha dato il via a concorsi pubblici per la progettazione di alcune parti dell’impianto.

Uno di questi concorsi ha riguardato la progettazione della nuova torre di controllo. Il gotha dell’architettura mondiale ha partecipato a questo concorso realizzando incredibili progetti.

Il vincitore a sorpresa di questa competizione è stato l’italianissimo Pininfarina che ha sconfitto rivali del calibro dell’israeliana Zaha Hadid, di Moshe Safdie e Massimiliano Fuksas.

Torre03

Il progetto di Pininfarina si è affermato per la sua bellezza e per l’innovazione delle linee che lo contraddistinguono. A forma di tulipano (simbolo della città di Istanbul), la torre ha la forma di una freccia che prende il volo scoccata da un arco e simbolicamente in grado di unire le dimensioni di spazio e tempo.

Il progetto è stato selezionato dal consorzio che si è aggiudicato la costruzione dello scalo. Ciò che lo ha fatto scegliere sono sicuramente le riconoscibili linee automobilistiche dell’architetto design italiano e dalla qualità architettonica e al tempo stesso strutturale che scaturisce dall’opera.

Torre01

Il design della torre evidenzia linee fluenti e aereodinamiche, una spirale che si spinge con le sue linee curve verso l’alto proponendosi di diventare uno dei simboli della rinascita e della crescita di questa metropoli del mar Nero.

PUOI LEGGERE ANCHE:
SCARICA L’ARTICOLO:
Feb 162016
 

Cerotti02

Oggi la parola SMART, è sicuramente una di quelle più utilizzate, forse in alcuni casi in maniera impropria, ma sta ad indicare un cambiamento, una trasformazione in atto di ogni aspetto della nostra vita quotidiana.

Sempre dalla rete si attingono una gran quantità di informazioni e la mia attenzione questa volta è stata catturata da una piccola ma grande innovazione. Pare, infatti, che i cerotti, si quelle piccole striscette adesive che mettiamo sulle ferite, stiano per subire una trasformazione epocale.

I cerotti che sono stati sviluppati dal MIT, sono composti da idrogel, un materiale elastico, appiccicoso e trasparente da applicare sulle ferite in grado di velocizzare la guarigione delle stesse.

Il MIT è riuscito a riprodurre, dopo diversi tentativi falliti, il materiale di cui sono costituiti gli animali, ossia l’idrogel un gel composto da reti polimeriche legate a molecole di acqua. Ci sono riusciti sfruttando le caratteristiche del poliacrilammide, una macromolecola che contiene unità ripetitive di diverso tipo.

Cerotti01

I vantaggi sono molteplici: innanzitutto è applicabile facilmente su ogni tipo di ferita in qualsiasi punto del corpo, grandissima resistenza sia ai liquidi che alle sollecitazioni meccaniche e cosa incredibile, data la loro natura, consentono di inserire all’interno medicinali per un suo rilascio graduale, sensori, chip e altri strumenti elettronico-medicali.

Questo gel, composto prevalentemente da acqua (90%), presenta, come detto, una resistenza meccanica straordinaria. Una volta applicato sulla ferita, la sua resistenza è paragonabile a quella che tiene unite le cartilagini umane con i tendini. In questo modo ogni tipo di ferita potrà essere ricoperta e protetta dal gel dimenticando la scomoda, ma purtroppo frequente, attitudine dei cerotti a staccarsi dalla ferita.

I sensori posizionati al suo interno garantiranno anche un rilascio graduale del farmaco di cui può essere imbibito il cerotto, in base alla temperatura corporea o a altri parametri registrati dal sensore stesso.

GUARDA I VIDEO:
PUOI LEGGERE ANCHE:
SCARICA L’ARTICOLO:
Feb 152016
 

IoSTUDIONella ricerca di fonti alternative di energia per sopperire ai limiti dei combustibili fossili, una delle soluzioni con maggiori prospettive di crescita e sviluppo, è lo sfruttamento dell’oceano e delle sue immense masse d’acqua.

Le possibilità che l’oceano offre da questo punto di vista sono molteplici. Infatti, questa immensa mole d’acqua per tutta una serie di motivazioni, è in costante movimento e la possibilità di sfruttarla come fonte energetica risulta possibile in differenti modi, molti dei quali anche economicamente convenienti.

Dagli oceani, attraverso differenti tecnologie è possibile ricavare energia da trasformare sfruttandolo uno dei seguenti fenomeni:

  • correnti;
  • onde;
  • maree;
  • gradienti (osmosi e talassotermica).
ENERGIA DALLE CORRENTI

Le correnti marine, possono essere considerate come degli immensi fiumi che scorrono in mezzo agli oceani a volte per migliaia di chilometri. Possono essere superficiali o profonde e possono generarsi a causa di una serie di fattori naturali. I fattori primari sono la differenza di temperatura dovuta al riscaldamento solare alle varie latitudini e la rotazione terrestre. I fattori secondari sono le differenze di pressione atmosferica, di densità delle acque e le maree.

STUDIA CON I VIDEO:

A causa di tutti i fattori sopra indicati, in alcune zone del nostro pianeta e soprattutto in presenza degli “stretti”, la velocità di spostamento dell’acqua può essere notevole raggiungendo anche alcuni metri al secondo. L’energia solare assorbita riscalda la superficie del mare, creando una differenza di temperatura fra le acque superficiali, che possono raggiungere i 25°-28°C e quelle situate per esempio a una profondità di 600 m che non superano i 6°-7°C.

Correnti

DALL’ENERGIA CINETICA A QUELLA ELETTRICA

Passaggi-eolico

Le correnti marine si comportano come le correnti aeree e come nelle centrali eoliche, lo spostamento di masse d’acqua (energia cinetica) che impattano contro degli sbarramenti totalmente o parzialmente sommersi, possono generare una grande quantità di energia elettrica. Grandi turbine ad asse verticale (per le correnti costanti) o ad asse orizzontale (per le correnti di marea) sono in corso di studio o sperimentazione in diversi siti mondiali. La più grande centrale di questo tipo si trova in Francia, ma sono in realizzazione grandi centrali anche in Inghilterra, Norvegia e Giappone. In Italia il sito più interessante per lo sfruttamento di questo tipo di energia è lo Stretto di Messina, dove le pale immerse in acqua riescono a generare fino a 15 Mw di potenza.

seaflow

Turbine ad asse verticale

Turbine orizzontali

Turbine ad asse orizzontale

 

 

 

 

 

 

STUDIA CON I VIDEO:

ASPETTI NEGATIVI DI QUESTI IMPIANTI:

In generale questi impianti non creano particolari problemi. L’assenza di sbarramenti, grazie alla parziale o totale immersione in acqua delle turbine, riducono inoltre al minimo il loro impatto ambientale.

ENERGIA DALLE ONDE

Un altro fenomeno sfruttabile per produrre energia dall’oceano, sono le onde che solcano la sua superficie. Le onde si generano a causa del vento che, spirando sulla superficie marina, trasferisce parte della sua Energia Cinetica all’acqua. La quantità di energia sfruttabile dipende, dall’ampiezza delle onde e dal tempo che intercorre tra un’onda e l’altra. Questi parametri dipendono a loro volta dalla velocità del vento e dalla profondità d’acqua sottostante.

DALL’ENERGIA CINETICA A QUELLA ELETTRICA

Passaggi-eolico

Diversi sono i progetti in studio sul pianeta, ma i più promettenti sono:

  • sistemi ad impianti galleggianti;
  • sistemi ad impianti sommersi.
IMPIANTI GALLEGGIANTI

Un progetto di nuova tecnologia che, sfrutta l’energia prodotta dalle onde di superficie degli oceani e permette di produrre elettricità è il Progetto Pelamis, il cui nome deriva da un serpente marino.

Pelamis

Pelamis è un sistema di tubi galleggianti legati tra di loro che, grazie al movimento delle onde genera su dei pistoni idraulici accoppiati a dei generatori, nei punti di snodo tra i tubi, energia meccanica che viene trasformata in energia elettrica. Il primo prototipo è stato installato al centro europeo per l’energia marina delle Isole Orcadi, in Scozia. È stato ufficialmente aperto il 28 settembre 2007. In genere la singola struttura è composta da 5 elementi congiunti, ha un diametro di 3,5m, una lunghezza di 150m capaci di generare  una potenza di 750 kW. I materiali devono essere resistenti all’azione corrosiva dell’acqua di mare e sono previsti accessi alla struttura per eventuali interventi di manutenzione e/o riparazione.

STUDIA CON I VIDEO:

ASPETTI NEGATIVI DI QUESTI IMPIANTI:

I problemi generati dall’utilizzo di questa tecnologia, sono dovuti all’impatto visivo e all’occupazione di superficie marina, potenzialmente pericolosa per la navigazione. Inoltre, sono ancora presenti problemi legati alla produzione di energia a causa dell’irregolarità del moto ondoso.

IMPIANTI SOMMERSI

Questa seconda tecnologia risolve il problema dell’impatto ambientale perché risulta totalmente sommersa. E’ anche questo un impianto off-shore che sfrutta il principio di Archimede. L’impianto è fissato al fondale marino ed è costituito nella sua parte superiore da un cilindro cavo che si muove in verticale a causa del cambiamento di pressione idrostatica generato dal passaggio delle onde.

Approfondisco: il principio di Archimede dice che “ogni corpo immerso parzialmente o completamente in un fluido, riceve una spinta verticale dal basso verso l’alto, uguale per intensità al peso del volume del fluido spostato».

AWS

L’energia meccanica che ne deriva viene trasformata in energia elettrica grazie ad un generatore. Esiste un impianto del genere installato lungo le costa del Portogallo e produce circa 2 MW di potenza elettrica.

ENERGIA DALLE MAREE

Le maree sono il ritmico alzarsi (flusso) ed abbassarsi (riflusso) del livello del mare provocato dall’azione gravitazionale della Luna e del Sole. Oltre alla forza di gravitazione universale in questo fenomeno entra in gioco anche un’altra forza, quella centrifuga di rotazione della Terra.

DALL’ENERGIA CINETICA A QUELLA ELETTRICA

Passaggi-eolico

Questo tipo di impianto è a tutti gli effetti una centrale idroelettrica con turbina kaplan trovandosi al livello del mare, quindi con piccola caduta e portata molto elevata. Questo tipo di impianto che necessita di sbarramenti e bacini di accumulo, funziona in due fasi distinte:

alta marea, l’apertura delle chiuse permette il riempimento del bacino di accumulo;

bassa marea, il rilascio controllato dell’acqua contenuta nel bacino assicura la produzione di grandi quantitativi di energia anche in questa fase.

Isola di Mont Saint Michel in Francia

Impianti mareomotrici
Le turbine funzionano in entrambe le direzioni, sia con l’acqua in ingresso che con l’acqua in uscita.
STUDIA CON I VIDEO:

ASPETTI NEGATIVI DI QUESTI IMPIANTI

Gli aspetti negativi delle centrali maremotrici sono dovuti nell’elevato impatto ambientale, dovuti alla necessità di realizzare grandi infrastrutture e per l’erosione delle coste.

ENERGIA DAI GRADIENTI

Altre due tecnologie legate ai fenomeni marini sono in studio in diversi paesi del mondo. Si tratta di sistemi per ottenere energia da fenomeni fisico-chimici che avvengono in natura.

  • gradiente salino (osmosi)
  • gradiente termico (talassotermia)
GRADIENTE SALINO

Approfondisco: l’osmosi è quel fenomeno fisico spontaneo, ossia senza apporto di energia dall’esterno, per cui quando due liquidi a differente concentrazione salina entrano in contatto, quello a maggior concentrazione tende a diluirsi in quello meno concentrato (riduzione della differenza di concentrazione).

Il fenomeno della differenza di concentrazione salina o osmosi, si manifesta maggiormente in quei luoghi ove due liquidi a diversa concentrazione entrano in contatto, ossia dove i fiumi scaricano le loro acque in quelle salate del mare.

osmosi

In una centrale a gradiente salino, una membrana semipermeabile, separa l’acqua dolce da quella salata. A causa dell’alta concentrazione salina dell’acqua di mare, le molecole d’acqua dolce tendono a trasferirsi naturalmente in quella salata in modo da abbassare il suo grado di salinità e avvicinare cosi le concentrazioni saline dei due liquidi (il fenomeno avviene in questa direzione perché i pori della membrana sono attraversabili solo dalle molecole d’acqua più piccole di quelle dei sali che rimangono concentrate in prossimità della membrana). Il movimento dell’acqua attraverso la membrana genera quella che viene chiamata pressione osmotica, che può essere utilizzata in una turbina per produrre energia.

GRADIENTE TERMICO

Il fenomeno della differenza di gradiente termico o talassotermica, sfrutta invece le differenze di temperatura tra la superficie marina (più calda) e quella delle profondità oceaniche.

Un gradiente termico di 20 °C è sufficiente per produrre energia elettrica in maniera economicamente conveniente, utilizzando la tecnologia OTEC (Ocean Thermal Energy Conversion).

Talassotermia

In un sistema del genere, il calore delle acque superficiali, fa evaporare il liquido di lavoro, normalmente ammoniaca, fungendo da sorgente calda. Questo vapore entra in un ciclo turbina a vapore-alternatore che trasforma l’energia termica in elettrica. L’acqua proveniente dalle profondità marine, raffredda il vapore condensandolo nuovamente in acqua chiudendo così il ciclo.

PUOI LEGGERE ANCHE:
Feb 082016
 

Batterie esplosive01

Le batterie sono sicuramente il tallone di Achille di tutte le apparecchiature elettriche e soprattutto degli smartphone. Tutti i produttori stanno investendo e cercando soluzioni in grado di garantire ai loro dispositivi una maggiore durata e autonomia, consci che chi raggiungerà per primo l’obiettivo acquisirà prestigio e un’enorme fetta di mercato.

Ma la durata è solo uno dei problemi delle batterie di dispositivi elettronici. Infatti, i componenti chimici con cui sono realizzate, possono causare alcune volte l’esplosione delle stesse con gravi conseguenze sia per il dispositivo che per l’utilizzatore.

I ricercatori dell’Università di Stanford stanno sviluppando in questi giorni una tecnologia che mira proprio a garantire un maggiore sicurezza a protezione degli utenti.

Lo studio è condotto sulle normali batterie agli ioni di litio, quelle utilizzate in tutti i dispositivi, composte da due elettrodi e da un gel elettrolita che trasporta le particelle tra i due poli.

In una normale batteria, una accidentale foratura o un sovraccarico, possono provocare un aumento della temperatura fino a oltre i 150°C e l’elettrolita innescare un’esplosione. I ricercatori di Stanford hanno trovato una soluzione ingegnosa ricorrendo alle nano-tecnologie e al miracoloso grafene. Una pellicola di polietilene elastico, viene rivestita con particelle di grafene e nichel e avvolge tutto il corpo della batteria. La pellicola, collegata con uno degli elettrodi consente il passaggio della corrente solo quando le particelle di nichel e grafene si toccano tra di loro. Ma a causa di un corto circuito o di un sovraccarico, la temperatura aumenta e superati i 70°C il polietilene si espande. Le particelle finiscono per allontanarsi tra di loro e non toccandosi più, spengono di fatto la batteria.

Batterie esplosive02

Non appena questa si raffredda, la pellicola plastica si contrae riportando le particelle di nichel e grafene a contatto, riaccendendo la batteria.

Il valore di espansione della pellicola, può essere modificato i base al tipo di polimero utilizzato e al numero di particelle inserite.

L’ulteriore vantaggio deriva dalla reversibilità del sistema. Infatti, altri sistemi già sviluppati in passato consentivano lo spegnimento della batteria prima del raggiungimento dei 150°C, però rendevano la batteria inutilizzabile. Questo approccio consente invece di continuare ad utilizzare la batteria anche dopo diversi cicli di stop garantendo una lunghissima durata alle stesse.

PUOI LEGGERE ANCHE:
SCARICA L’ARTICOLO:
Feb 062016
 
VOTA QUESTO ARTICOLO SU:logo

Molte metropoli, sono oggi in competizione per realizzare mega aeroporti in grado di accaparrarsi l’enorme business dei trasporti. Pensando a queste strutture, la mente ci porta subito alle grandi metropoli in rapida ascesa come Dubai, Abu Dhabi, Singapore, Doha o nel continente americano sicuramente New York, Miami, Los Angeles. Eppure è un altro l’aeroporto che entro il 2018 dovrebbe diventare il più grande scalo per numero passeggeri del pianeta. E stranamente questo si trova in una nazione della moderna Europa che però è accusata proprio di conservatorismo e arretratezza a causa del regime politico che la contraddistingue. Sto parlando della Turchia e dell’aeroporto di Istanbul.

istanbul-new-airport01

Un progetto di dimensioni gigantesche, 6 piste di decollo/atterraggio che dovranno portare entro il 2018 la capacità dell’aeroporto a circa 150 milioni di passeggeri l’anno e maggior scalo di comunicazione tra europa e oriente. Un avvio già dal 2017 con traffico di 90 milioni di passeggeri pari a quelli di Atlanta, oggi considerato il maggior hub aeroportuale al mondo.

L’Istanbul Yeni Havaliman, il nuovo aeroporto di Istanbul, si sovrapporrà inizialmente agli altri due già esistenti, ma entro il 2021, l’aeroporto di Atatürk (quello attuale), verrà dismesso proprio per evitare una concorrenza inutile.

istanbul-new-airport05

La data di avvio delle attività del nuovo aeroporto dovrebbero coincidere con l’inaugurazione prevista per il 20 ottobre 2017 data in cui la Turchia festeggia l’anniversario della fondazione della Repubblica Turca che avvenne nel 1923.

L’area in cui sta sorgendo il nuovo mega aeroporto è una zona nel distretto rurale della città di Arnavutköy nella parte europea di Istanbul.

istanbul-new-airport02

Merito del governo turco, quello di aver rispettato tempi di progettazione e indagini che invece si pensava finissero impantanati tra ricorsi e denunce di associazioni e ambientalisti.

Un’area di circa 80 km2 come una grande città, paludosa e rurale, è stata sottoposta a trivellazioni esplorative e controlli ambientali necessari per preservare l’ambiente da pericolose contaminazioni e danni irreversibili per la città.

I lavori iniziano nel 2014 sotto l’egida del presidente Erdogan e del primo ministro Davutoglu i quali, hanno fatto in modo di proteggere il gigantesco progetto e altri in corso dalla fragilità e volatilità del sistema politico turco, incapace per il momento di formare un governo stabile.

istanbul-new-airport03

Un gigantesco hub in grado di coprire le rotte a lungo raggio mantenendo bassi i costi per compagnie aeree e passeggeri, capace di innescare un percorso virtuoso per la Turkish Airline che si sta facendo strada tra i giganti del golfo Emirates, Ethiad e Qatar che da soli hanno trasportato ben 115 milioni di passeggeri l’anno scorso contro i 50 del 2008.

Lo studio di progettazione è il londinese Grimshaw Architect in partnership con il norvegese Nordic Office of Architecture e lo studio Haptic. Pochi giorni fa hanno svelato al mondo il mega progetto che dovrebbe portare l’aeroporto ad accogliere 150 milioni di passeggeri quando sarà a pieno regime.

Sarà un’immensa area di oltre 100 ettari coperta da un sistema di lucernai simili alle volte delle moschee. Uno dei progettisti ha infatti dichiarato che l’opera sarà modernissima e altamente tecnologica, ma fortemente ispirata ai colori e alle forme della tradizione araba.

I lucernai che lasceranno passare la luce all’interno durante il giorno sono chiaramente ispirati alle volte delle grandi moschee della città come quella di Solimano.

istanbul-new-airport04

L’aeroporto sorgerà a circa 20 km dalla città e sarà collegato a questa da un moderno ed efficiente sistema di metropolitane.

Sarà realizzato in quattro tempi diversi di cui la prima parte diverrà completamente operativa nel 2018.

GUARDA I VIDEO:
PUOI LEGGERE ANCHE:
SCARICA L’ARTICOLO: