Giu 112021
 
ENERGIA NUCLEARE
Indice Argomenti
1 FISSIONE NUCLEARE
2 LE CENTRALI ELETTRO-NUCLEARI
3 FUSIONE NUCLEARE
4 PRO E CONTRO DELL’ENERGIA NUCLEARE
Mappa MAPPA CONCETTUALE DELL’ARGOMENTO
Video APPROFONDISCI CON I VIDEO
Argomenti correlati
#1 FUKUSHIMA: SIAMO DAVVERO IN PERICOLO?

L’energia nucleare è una forma di energia che deriva da profonde modificazioni della materia.
Più di un secolo fa Albert Einstein scoprì che questa poteva essere trasformata in energia…

…e che questa trasformazione poteva avvenire attraverso 2 differenti processi:

  • la Fissione Nucleare
  • la Fusione Nucleare
FISSIONE o SCISSIONE NUCLEARE

La fissione nucleare o la scissione nucleare, consiste nella disintegrazione del nucleo di un atomo, per mezzo dei neutroni che colpendolo alla velocità della luce, lo spezzano in nuclei più leggeri.
Einstein notò che sommando la massa dei nuclei più piccoli, la somma era inferiore a quella del nucleo originario. Come mai? Questo perché una parte di essa si era trasformata in energia! Infatti, una reazione nucleare, genera luce e calore, e questi sono proprio ottenuti per la trasformazione di parte della materia degli atomi.

Inoltre, se la quantità di materiale fissile è sufficiente, durante la fissione si liberano altri neutroni che vanno a colpire altri nuclei innescando così una reazione a catena.
L’elemento fissile usato nelle centrali è l’uranio 235 che costituisce il combustibile che, una volta inserito nei reattori, svilupperà un enorme quantità di energia.

Durante la fissione, oltre all’energia si ottiene un nuovo materiale fissile non presente in natura chiamato Plutonio.

 TORNA ALL’INDICE

LE CENTRALI ELETTRO-NUCLEARI

L’uomo riesce a realizzare queste reazioni all’interno di grandi strutture il cui scopo è quello di trasformare l’energia prodotta dalla fissione in elettricità, ecco perché prendono il nome di centrali elettro-nucleari.

Il combustibile fissile, l’uranio 235, viene inserito all’interno del reattore o core, chiuso all’interno di una struttura di contenimento affinché le radiazioni mortali prodotte da questa, non si disperdano all’esterno. Qui, avviene una fissione controllata. In pratica, apposite barre di controllo vengono inserite tra le pile di combustibile e abbassate se la reazione diventa troppo rapida o violenta, in modo da rallentarla o spegnerla del tutto in caso di necessità.

L’uranio naturale viene sottoposto ad un processo di macinazione che produce comunemente un materiale in polvere secca di colore giallo, chiamato appunto yellow cake, proprio perché viene confezionato in piccoli cilindri che assomigliano a delle torte gialle.Anche

Il calore prodotto, viene utilizzato per far evaporare dell’acqua all’interno di un generatore di vapore, che viene utilizzata per raffreddare il reattore e per attivare una turbina a vapore la quale trasforma così l’energia termica prodotta in energia di tipo meccanico.

La turbina è collegata ad un alternatore, trasformando così l’energia meccanica in energia elettrica.

Come in ogni centrale elettrica, poi, l’elettricità passa al trasformatore che ne innalza la tensione per il trasferimento sulla rete elettrica attraverso i tralicci e i cavi dell’alta tensione.

 TORNA ALL’INDICE

FUSIONE NUCLEARE

La fusione nucleare è una reazione attraverso la quale i nuclei di due atomi leggeri, deuterio e trizio, si uniscono tra loro, dando come risultato un nuovo elemento chimico chiamato elio.
Anche in questo caso, quando i due nuclei più leggeri si fondono insieme, il nucleo che hanno formato, sarà meno pesante della somma degli altri due. Anche in questo caso la materia mancante si è trasformata in energia termica e luminosa.

Questa reazione, al contrario della fissione, non può ancora essere realizzata perché la condizione per cui i due atomi leggeri si fondano insieme, dipende da una pressione spaventosa e da una temperatura di milioni di gradi, condizioni che si verificano all’interno delle stelle come il nostro Sole o in una reazione nucleare incontrollata come in una bomba all’idrogeno.

 TORNA ALL’INDICE

IL FUTURO DELLA FUSIONE NUCLEARE: IL TOKAMAK

Toro

Per poter sfruttare l’enorme quantità di energia prodotta dalla fusione nucleare, si sta sperimentando il Tokamak, una macchina a forma di “ciambella”, sviluppata in Unione Sovietica negli anni 50’. Il nome un po’ curioso deriva dall’acronimo russo e significa “camera toroidale magnetica”. La forma toroidale (oppure a ciambella) del dispositivo non è stata di certo una scelta a caso, ma è fondamentale per il suo giusto funzionamento, in quanto la forma a ciambella del contenitore impedisce alle particelle di fuoriuscire dalle estremità, muovendosi invece in cerchi continui.

Raffigurazione 3D del Tokamak

Una camera vuota avvolge e protegge lo strato più interno in cui avviene il processo, impedendo l’interazione con le particelle esterne. L’intera struttura è avvolta da bobine magnetiche realizzate con superconduttori che, con la loro capacità di assorbire poca potenza elettrica, generano campi magnetici così potenti da permettere ai laser che bombardano le particelle di raggiungere le temperature adeguate e mantenere coeso il plasma.

Il campo magnetico generato impedisce agli elettroni di urtare contro le pareti, mentre le forze magnetiche addensano il plasma, portando i nuclei caricati positivamente abbastanza vicini da superare le forze elettrostatiche e li costringono a fondersi.

 TORNA ALL’INDICE

PRO E CONTRO DELL’ENERGIA NUCLEARE

Per ora, quando parliamo di energia nucleare ci riferiamo a quella prodotta con il processo di fissione. Produrre energia elettrica attraverso l’energia nucleare presenta notevoli vantaggi, ma porta con se anche alcuni importanti svantaggi. Vediamoli:

PRO

  • da una piccola quantità di uranio si ottiene molta energia elettrica;
  • non essendo basata sulla combustione di risorse fossili o vegetali, non causa l’emissione in atmosfera dei gas responsabili del dell’effetto serra;
  • riduce la dipendenza dall’estero nell’approvvigionamento energetico, in quanto consente di produrre una parte dell’energia elettrica senza dover importare dai paesi produttori, gas, carbone o petrolio.
  • può funzionare ininterrottamente per 40-60 anni. Un periodo di tempo così lungo consente di ammortizzare l’elevato costo iniziale della centrale atomica.

CONTRO

  • dopo il processo di fissione nucleare vengono rilasciati dei rifiuti altamente radioattivi (scorie), che vengono smaltiti dopo tantissimi anni. Solitamente questi rifiuti vengono rinchiusi in depositi sotto terra lontani dallo scorrere delle falde acquifere e controllati dall’esercito perché potrebbero interessare gruppi terroristici per produrre le cosiddette bombe sporche;

  • le centrali nucleari richiedono un maggior livello di sicurezza rispetto ad altre centrali, perché in caso di incidenti, sono quelle che danneggiano di più l’ambiente. Tristemente famosi gli incidenti nelle centrali nucleari di Chernobyl nel 1986 e Fukushima nel 2001.

 TORNA ALL’INDICE

MAPPA CONCETTUALE DELL’ARGOMENTO


 TORNA ALL’INDICE

APPROFONDISCI CON I VIDEO
LA FISSIONE NUCLEARE LA FUSIONE NUCLEARE
Durata: 1:02 Durata: 2:34
VERSO LA FUSIONE NUCLEARE
Durata: 7:42 Durata: 0:00
SCOPRI GLI ALTRI VIDEO SU NUCLEARE

 TORNA ALL’INDICE

ANCHE NOI SCRITTORI
Alunno/i autore/i dell’articolo:
RICCARDO FRANCALANZA – AGNESE CORSARO
Classe e Anno: Argomento di Riferimento:
Terza D – 2020/21 ENERGIA NUCLEARE
Apr 242021
 
SOLARE TERMICO
Indice Argomenti
1 I PANNELLI SOLARI
2 I TIPI DI IMPIANTI A PANNELLI SOLARI
3 MAPPA CONCETTUALE DELL’ARGOMENTO (non disponibile)
4 APPROFONDISCI CON I VIDEO
Lezioni Precedenti sull’Energia Solare
#1 ENERGIA SOLARE
#2 FOTOVOLTAICO

 

I PANNELLI SOLARI

Schema di Impianto a Pannelli Solari

I pannelli solari, funzionano essenzialmente per la produzione di calore a bassa temperatura e sfruttano il principio dell’effetto serra. Una piastra captante metallica, raccoglie l’Energia Solare e inizia ad emettere calore (Energia Termica).

Quale forma di ENERGIA sfruttiamo in un impianto a Pannelli Solari?

 TORNA ALL’INDICE

I TIPI DI IMPIANTI A PANNELLI SOLARI

Gli impianti solari termici utilizzati sono di due tipi:

  • a circolazione naturale;
  • a circolazione forzata.

Gli impianti a circolazione naturale sono sistemi monoblocco a circuito chiuso, che funzionano senza necessità di pompe né di componenti elettrici. Sono costituiti da un collettore solare esposto alle radiazioni solari, all’interno del quale l’acqua si scalda e sale per convezione (effetto termosifone) verso il serbatoio, confluendo quindi nel circuito domestico.

Gli impianti a circolazione forzata hanno il serbatoio montato separatamente (nel sottotetto o nel locale caldaia) e il liquido del circuito primario è spinto da una pompa. La pompa di circolazione viene messa in moto da una centralina elettronica che confronta le temperature dei collettori e dell’acqua nel serbatoio di accumulo rilevata da apposite sonde.

Impianto a Circolazione Naturale Impianto a Circolazione Forzata

I componenti principali di un sistema a Pannelli Solari termici sono:

  1. pannello solare;
  2. serbatoio di accumulo dell’acqua calda;
  3. pompa (solo nei sistemi a circolazione forzata);
  4. centralina elettronica;
  5. collegamenti idraulici ed elettrici.

PANNELLO SOLARE – possono essere raggruppati in 2 tipi principali: con tubi sottovuoto, oppure vetrati. Esistono, comunque, molte varianti come ad esempio pannelli ad aria, pannelli scoperti, a cupola.

  • Pannelli solari sottovuoto – si presentano come tubi di vetro, al cui interno viene tolta tutta l’aria possibile creando il vuoto, in modo che venga impedita la cessione del calore (effetto Thermos). All’interno viene posto un elemento assorbitore di calore, per lo più un tubo di rame, e vengono  denominati “tubi heat-pipe“. In alcune versioni a circolazione naturale all’interno del tubo può circolare direttamente l’acqua da riscaldare. Questo tipo di pannelli ha un ottimo rendimento in tutti i mesi dell’anno e sono adatti ad essere installati anche in condizioni climatiche molto rigide: quindi indicati nel nord Italia, così come al sud.
Schema Pannello Heat-Pipe Pannello Heat-Pipe
  • Pannelli solari vetrati – sono storicamente i primi apparsi sul mercato. Sono composti da un vetro trasparente alla luce del sole, ma opaco ai raggi infrarossi, che sono così trattenuti all’interno. I raggi del sole, che raggiungono la parte interna del pannello, lo scaldano e il calore viene trattenuto all’interno (effetto serra). La superficie di questi pannelli può essere, o meno, trattata con prodotti che ne migliorano il rendimento (ossia la capacità di “trattenere” i raggi). Può, inoltre, essere presente un serbatoio di accumulo integrato, oppure un accumulo separato, più indicato per le località particolarmente rigide.
Schema Pannello Solare a Vetro Pannello Solare a Vetro

Serbatoio, pompa, centralina elettronica e collegamenti idraulici e elettrici sono gli elementi che completano un impianto solare termico a bassa temperatura.

 TORNA ALL’INDICE

MAPPA CONCETTUALE DELL’ARGOMENTO


 TORNA ALL’INDICE

APPROFONDISCI CON I VIDEO
PANNELLO SOLARE COME FUNZIONA?
Durata: 1:21 Durata: 1:23
SCOPRI GLI ALTRI VIDEO SU ENERGIA SOLARE

 TORNA ALL’INDICE

Gen 172021
 

La tecnologia fotovoltaica, ossia quella utilizzata nei pannelli che disponiamo sui tetti delle nostre case, capaci di raccogliere la luce del sole trasformarla in elettricità è soltanto all’inizio e assistiamo continuamente nuove scoperte che ne migliorano le caratteristiche, la qualità e la durata. Uno dei problemi maggiori dei pannelli fotovoltaici e che nella conversione della luce in energia elettrica essi riescono, nelle condizioni migliori, a convertire al massimo i due terzi dei fotoni che li colpiscono.

Partiamo dal ricordare velocemente come funziona la tecnologia fotovoltaica; si tratta di quel fenomeno fisico per cui un materiale semiconduttore trattato con differenti prodotti sulle sue due superfici, diventa un diodo, ossia un componente elettrico in grado di far fluire la corrente solo in una direzione creando così la possibilità di assemblare diverse celle in sequenza per formare una stringa e poi pannelli sempre più grandi, sommando in questo modo le cariche prodotte come fanno le pile in sequenza. Purtroppo questi pannelli sono in grado di convertire soltanto alcuni fotoni, quelli ad alta energia, mentre altri, invece, vengono completamente dispersi o non catturati perdendo una grande quantità di energia che potrebbe essere sfruttata.

Lo studio condotto dalla Dipartimento di Scienza dei Materiali dell’Università di Milano Bicocca, ha permesso di realizzare nuovi materiali capaci di modificare le proprietà elettroniche di questi pannelli e di ottimizzare il recupero di parte dello spettro solare non utilizzato dai dispositivi fotovoltaici. In pratica, il sole emette radiazioni di diverso colore e quindi con diversa energia che, potrebbero tutti essere raccolti per produrre elettricità e attivare reazioni chimiche, ma sfortunatamente, le tecnologie fotovoltaiche attuali non riescono a realizzare.

I ricercatori dell’Università milanese, hanno progettato un sistema multicomponente in grado di catturare i fotoni sprecati, quelli a bassa energia, e di convertirli in fotoni ad alta energia così da poter sfruttare la parte di spettro luminoso che sfugge agli attuali sistemi. Si tratta di nanocristalli a semiconduttore capaci di assorbire la luce, modificati introducendo al loro interno delle impurezze d’oro il cui scopo è quello di funzionare da ponte energetico tra il nano-cristallo e i convertitori, sfruttando dei meccanismi ultra veloci che avvengono in milionesimi di milionesimi di secondo (picosecondo).

È ovvio che questa ricerca, pubblicata sulla rivista Advanced Materials, ed intitolata High Photon Upconversion Efficiency with Hybrid Triplet Sensitizers by Ultrafast Hole-Routing in Electronic-Doped Nanocrystals, potrà portare nell’immediato futuro allo sviluppo di nuovi nano-materiali ibridi in grado di portare enormi miglioramenti anche in altri campi della fotonica e della fotochimica.

PUOI LEGGERE ANCHE:
Gen 162021
 

La capacità di alcuni materiali di accumulare calore in determinate condizioni, è nota già da tempo e diversi studi sono stati sviluppati con risultati alterni. 

Ciò che ha rallentato gli studiosi nella realizzazione di materiali compositi per l’accumulo di energia termo-chimica, è stato il loro costo. Infatti, ad esempio, uno dei materiali migliori dal punto di vista termico, la zeolite, ha un costo per kilogrammo di diverse decine di euro diventando, per cui, assolutamente diseconomico per qualunque tentativo di utilizzo come materiale per la produzione di calore. Il Politecnico di Torino in collaborazione con l’Istituto di Tecnologie Avanzate per l’Energia, ha pubblicato sulla rivista Scientific Reports, i risultati di questo studio che dimostra come utilizzando il cemento come matrice per l’accumulo del calore si possa creare un ottimo compromesso tra risultato e costo.

La tecnica, nota da tempo e già utilizzata ad esempio in alcune centrali solari, parte dal principio che riscaldando alcuni sali, questi riescono a conservare questo calore per un tempo indefinito se posti all’interno di altri materiali definiti come matrici. Un semplice esperimento può dimostrare come del sale inserito all’interno di un bicchiere di acqua provoca un riscaldamento del bicchiere mentre con altri sali è possibile raffreddarlo. Il sistema utilizzato dal Politecnico di Torino non prevede l’uso di acqua bensì di vapore acquo per scaldare i sali senza provocarne lo scioglimento. Questo, è possibile, inserendo il sale all’interno dei pori del cemento. I vantaggi sono notevoli: il vapore acqueo, interagendo con il sale sviluppa calore e quando il sale è completamente idratato potrà essere riportato alla situazione di partenza semplicemente essiccandolo visto che non viene disciolto. Questo ciclo è ripetibile praticamente all’infinito con un costo sempre più basso ad ogni successiva applicazione. 

Questo è evidentemente il primo passo per poter sviluppare calore a basso costo e provare a risolvere i problemi energetici che sempre più affliggono il nostro mondo, utilizzando tra l’altro un sistema assolutamente sostenibile. Questo problema è dovuto soprattutto al fatto che i picchi di richiesta energetica si presentano principalmente nel periodo invernale quando la durata della giornata e la quantità di energia solare disponibile è inferiore rispetto, invece, al periodo estivo dove la richiesta di energia per riscaldamento è al minimo e l’irraggiamento al massimo.

PUOI LEGGERE ANCHE:
Nov 072020
 

Uno dei problemi che affliggono il nostro pianeta, è l’inquinamento atmosferico dovuto all’emissione di gas serra, anidride carbonica, particolati e altre sostanze nocive. Immediatamente ci vengono in mente le grandi industrie pesanti, il traffico urbano o le emissioni domestiche. Esiste, però, un altra grande fonte di inquinamento, meno evidente ma purtroppo sempre importante, le grandi navi oceaniche. Dotate di potenti motori diesel, sono tra i maggiori mezzi inquinanti in circolazione sul pianeta.
Ma una soluzione pare essere alle porte; infatti, un nuovo combustibile che apre nuovi scenari e soprattutto strizza l’occhio all’ambiente e si propone come una soluzione molto più sostenibile rispetto a quelle in uso oggi. Si tratta dell’LNG.
Ma che cos’è l’LNG? Si tratta di un acronimo delle parole inglesi liquefied natural gas ossia gas naturale liquefatto e si ottiene dopo la depurazione del gas naturale estratto dai pozzi. Infatti, al momento in cui viene prelevato dalla natura, il gas è una miscela di idrocarburi composta da metano, etano, propano, acqua, anidride carbonica e azoto per cui deve essere sottoposto ad una operazione di purificazione dagli inquinanti ed essere trasportato ai luoghi di impiego. Di norma, il trasporto avviene attraverso delle condutture chiamata gasdotti, ma quando la distanza è eccessiva, questo avviene attraverso l’impiego di speciali navi chiamate metaniere.

Per consentire un trasporto agevole, il gas viene sottoposto a un’operazione di liquefazione a temperature molto basse circa 160° sotto lo zero. In questo modo il suo volume si riduce di circa 600 essendo così trasportabile in grandi quantità.

Oltre che per l’uso domestico o per la produzione di energia, la scienza sta studiando di impiegare questo tipo di idrocarburo in motori di nuova concezione da implementare sulle grandi navi in via di costruzione in modo da sostituire gli inquinanti motori diesel di quelle attuali.

Questo gas consente di rispettare tutti i rigidi parametri antinquinamento previsti dalle normative, e inoltre, grazie al raffreddamento, la riduzione del suo volume di circa 600 volte lo rende facilmente trasportabile e stoccabile. Pensate che questa miscela gassosa trasformata in sostanza liquida, presenta dei vantaggi ambientali enormi, infatti non emette anidride solforosa, riduce del 25% l’anidride carbonica, taglia dell’85% le emissioni di ossidi di azoto e addirittura del 95% quelle di particolato. I serbatoi di queste nuove grandi navi da crociera potranno essere molto più piccoli e consentire la navigazione senza rifornimento per addirittura 14 giorni consecutivi.

Ad oggi sono state ordinate 118 navi alimentate a LNG, raddoppiando il numero delle navi con questo tipo di alimentazione dal 2014 ad oggi. Alla convention Seatrade Global 2016 di Fort Lauderdale, un dirigente di Wartsila, principale costruttore di motori per navi da crociera, ha dichiarato che, entro il 2025, l’80% delle navi da crociera saranno alimentate a LNG.

GUARDA I VIDEO:

PUOI LEGGERE ANCHE:

Set 162020
 

Dal genio creativo di un designer industriale, Lawrence Kemball-Cook, nasce una soluzione Smart, green, geniale per la produzione di energia.

Kemball-Cook, mette in pratica l’idea di gamification of life, ossia rendere le persone consapevoli delle proprie responsabilità per motivarle al cambiamento attraverso benefici e risultati immediati in maniera divertente quasi fosse un gioco. Questo concetto è messo in pratica osservando un evento che è normale all’interno delle città. Migliaia di persone, ogni giorno, ogni istante, percorrono le nostre strade, marciapiedi, entrano nelle metropolitane producendo una quantità di energia enorme che aspetta solo di essere convertita e sfruttata.

Questa idea è subito stata trasformata da Kemball-Cook, in Pevagen, una pavimentazione intelligente composta da una serie di mattonelle che sottoposte a pressione dall’energia cinetica dei passi umani, trasformano questa in elettricità grazie a tre bobine poste sotto la loro superficie, producendo all’incirca 5 watt di elettricità per passo.

Queste mattonelle sono composte da elementi triangolari uniti tra di loro senza formare spazi vuoti tramite un sistema ad incastro a “clic” che ne consente una facile manutenzione e ne abbassa i costi.

Le prime sperimentazioni sono state effettuate a Londra dove è stata pavimentata Bird Street, calpestata continuamente da migliaia di persone e poi nei pressi della casa bianca a Washington e di un centro commerciale alla periferia di Londra. In questi casi la presentazione è stata in grado di generare elettricità per l’illuminazione, per i suoni e per l’invio di dati. Il prossimo passo sarà quello di dotare di tale pavimentazione gli aeroporti, gli ospedali e i centri commerciali dove ovviamente, migliaia di persone ogni giorno  passano frettolosamente.

I cosiddetti beacon, posti nei punti di intersezione dei tasselli triangolari,  trasmettono tramite bluetooth i dati sui movimenti, fornendo dei grafici con i picchi di traffico e le abitudini dei consumatori. Ma secondo l’idea di Kemball-Cook, il prossimo passo sarà  quello di applicare questa pavimentazione smart alle strade, perché le automobili generano molta più energia dei pedoni quando ad esempio si fermano gli stop o ai semafori.

GUARDA I VIDEO:

PUOI LEGGERE ANCHE:
Mag 262020
 

Che le celle fotovoltaiche saranno sicuramente quelle che rivoluzioneranno il mercato dell’energia e il modo in funzioneranno le nostre apparecchiature. Forniranno energia gratuita e pulita alla maggior parte delle installazioni anche se è ancora necessario migliorare e rendere più efficiente l’attuale tecnologia. Ma oggi si inizia parlare di altro, ossia di utilizzare questo sistema capace di trasformare la luce del sole in elettricità come sistema di alimentazione per dispositivi indossabili. Immaginate il vostro smartwatch sempre al polso e senza alcuna necessità di dover essere continuamente posizionato sulla basetta di ricarica.

Si tratta di un nuovo sistema di celle, 10 volte più sottili, pari a 0,3 micron di spessore, leggerissime e, nonostante le ridotte dimensioni, capace di erogare sufficiente energia pari a 9,9 W per grammo in grado di alimentare apparecchi indomabili come il già citato smartwatch.

Il team di ricercatori internazionali, con la partecipazione della Monash University di Melbourne, spiega di aver realizzato questa minuscola cella fotovoltaica super sottile ad alta efficienza con un materiale che vanta una enorme capacità di curvatura meccanica e stiramento ed in grado di fornire una fonte energetica duratura.

Dei test eseguiti, risulta che anche le sue capacità di funzionamento sotto stress, risultano molto elevate, infatti questo, dopo oltre 4700 ore di funzionamento mostra un degrado e di appena il 4,8% e può funzionare con una degradazione minima per oltre 20.000 ore, cioè di circa 11,5 anni.

Il trucco dipende da un mix di materiali che sono in grado di assorbire non solo i raggi ultravioletti del sole ma anche diverse lunghezze d’onda e trasformare in elettricità il 13% della luce ambientale che è un numero piuttosto basso rispetto alle celle solari tradizionali, quelle per comprenderci posizionate sui tetti delle case, ma assolutamente sufficiente per un dispositivo da polso.

Nonostante i grand risvolti che potrebbe avere questa scoperta, i ricercatori frenano gli entusiasmi spiegando che saranno necessari anni prima di vederla applicata su un dispositivo, perché ancora diversi  problemi di funzionamento e tecnologici debbono essere risolti.

PUOI LEGGERE ANCHE:
Nov 152019
 

Oltre alle ricerche di nuove fonti di energia per la risoluzione dei problemi dell’umanità per gli anni avvenire, troviamo anche nuovi studi relativi allo sfruttamento e alla produzione di combustibili fossili attraverso processi naturali e meno inquinanti.

L’università canadese di Waterloo ha pubblicato il risultato di un’interessantissima ricerca sulla rivista scientifica Nature Energy. In pratica i laboratori dell’università sono riusciti a produrre una foglia artificiale che, imitando il processo della fotosintesi clorofilliana dove l’anidride carbonica viene trasformata in glucosio e ossigeno, trasforma quest’ultima in metanolo liberando anche ossigeno come nel processo naturale. Il coordinatore di questa ricerca, Yimin Wu, spiega sulla rivista i passaggi necessari che questa foglia effettua per trasformare l’anidride carbonica in metanolo.

Il segreto è racchiuso in un altro prodotto naturale noto come ossido rameoso, un ossido prodotto dalla rame conosciuto in natura come cuprite. In pratica, durante questo processo, quando l’acqua viene portata a una determinata temperatura e mescolata con l’anidride carbonica, si proietta anche una intensa luce bianca, aggiungendo immediatamente dopo, l’ossido rameoso che innesca una reazione chimica che porta alla produzione del metanolo. Questo processo genera ossigeno da un lato, come nella fotosintesi, mentre dall’altro, l’anidride carbonica si converte direttamente in metanolo che viene raccolto durante la sua evaporazione.

I ricercatori cercheranno nel prossimo futuro di intensificare questa produzione in maniera tale da poter brevettare questa soluzione e commercializzarla.

 I vantaggi non sono indifferenti, infatti questo è il prodotto di questa trasformazione, si è in realtà un carburante alternativo perché pur avendo le caratteristiche del combustibile fossile naturale, è prodotto da sostanze che non provengono più da questi ma da un processo esclusivamente naturale con un impatto ambientale praticamente minimo.

PUOI LEGGERE ANCHE:
Set 282019
 

Si parla sempre più di mobilità, di sostenibilità, di rispetto dell’ambiente e anche le nazioni stanno agendo in questa direzione, soprattutto la Comunità Europea con una serie di interventi volti a limitare al massimo e nel modo più rapido possibile, fenomeni inquinanti.

Diverse sono le tecnologie in ballo per poter sostituire il motore endotermico a benzina o gasolio per intenderci. Ma quale tecnologia si affermerà sul mercato e quando questo cambiamento potrà realmente avvenire?

Le tecnologie in gara per sostituire il motore endotermico, sono due: quelle che utilizzano batterie elettriche e quelle che utilizzano celle a idrogeno. Ma riuscire a capire, qual è la migliore tra le due è piuttosto complesso e in ogni caso, questo, prevede analisi di lungo periodo, cioè proiettate nel tempo quando saranno disponibili non solo un numero sufficiente di autovetture in circolazione, ma anche sistemi di ricarica e rifornimento sufficienti a soddisfare la richiesta.

Gli analisti della società Horváth&Partners hanno tentato di rispondere a questa domanda attraverso la pubblicazione di uno studio intitolato “Automotive Industry 2035 Forecasts for the Future” nel quale si ipotizzano differenti scenari che potrebbero verificarsi nei prossimi anni in base ai dati raccolti che mostrano come l’industria dell’automobile si sta muovendo.

Nello studio, ciò che emerge è che esisteranno due differenti fasi temporali una che durerà fino al 2023 al massimo 2025, catalizzata dagli sforzi dei costruttori per realizzare autovetture a emissioni zero e rispettose dei rigidissimi standard di sicurezza e sostenibilità che, faranno lievitare evidentemente i costi. Una seconda fase, che si concluderà intorno al 2035 in cui le auto di nuova generazione sostituiranno quelle vecchie con motori endotermici per due motivi. Il primo è che queste ultime diverranno più care di quelle elettriche a causa dell’introduzione degli standard Euro7 e della tassazione della CO2 con incremento del costo dei combustibili fossili e dall’altro il progresso della tecnologia che renderà il prezzo delle macchine di nuova generazione molto più basso e competitivo.

Schema auto a motore elettrico

Un altro dei fattori che favoriranno lo sviluppo e la diffusione di queste autovetture, sono i costi in meno che ciascuno di noi dovrà affrontare non soltanto dal punto di vista del carburante la cui differenza è sensibile visto che si calcola un risparmio attuale tra i 40o e i 600 euro di carburante/anno, ma anche il risparmio di manutenzione perché questo tipo di autovettura non ha bisogno di sostituzioni di olii e filtri per cui è soggetta a minori interventi manutentivi.

Schema auto a celle di combustibile

I limiti all’attuale diffusione di queste auto rispetto a quelle attualmente in circolazione è dovuta ad una serie di fattori concatenati. La durata delle batterie, la mancanza di un numero sufficiente di colonnine di ricarica, i tempi di ricarica delle stesse. Inoltre la produzione dell’elettricità di queste auto, oggi, non si può dire assolutamente verde, ma essendo prodotta anche da fonti non rinnovabili è anch’essa fonte di inquinamento. Lo studio ha messo in evidenza che, un’auto elettrica oggi produce meno CO2 di un’auto endotermica solo dopo aver percorso 100.000 km, ma anche questo dato è soggetto a cambiare rapidamente nei prossimi anni.

Lo studio, infine, cerca di analizzare i dati per capire quale, tra le due tecnologie, è la migliore cioè quella che probabilmente avrà maggiore diffusione nell’immediato futuro. Le auto a batteria elettrica hanno una maggiore efficienza globale tra il 70 e l’80%, mentre quelle a idrogeno tra il 25 il 35%. Questo è dovuto ai costi di produzione e trasformazione, nonché nel trasporto dell’energia dalla fonte alle batterie. Si conclude che i vantaggi della cella combustibile vengono dall’autonomia e dalla velocità di rifornimento, ma sono meno efficienti e più costose quindi attualmente per percorrere circa 100 km di strada servono tra i 9 e i 12 euro per un’auto a celle e tra i 2 e i 7 euro per una elettrica. Tutto ovviamente potrà essere cambiato o sovvertito se nuove tecnologie e nuove scoperte modificheranno il panorama attuale da qui al prossimo decennio.

GUARDA I VIDEO:

PUOI LEGGERE ANCHE:
Giu 122019
 

L’ennesima soluzione per realizzare batterie ecologiche, a basso costo e durature giunge dai ricercatori dell’Università americana di Purdue, nell’Indiana i quali hanno presentato i risultati di una loro ricerca piuttosto singolare.

Gli scienziati sono partiti da un materiale poco riciclabile ma altamente inquinante come il polistirolo, le palline bianche che servono per imballaggio e per l’isolamento. Solo per il 10% viene riciclato mentre il resto finisce nelle discariche con gravi problemi per lo smaltimento e soprattutto per l’ambiente, vista la quantità di sostanze chimiche contenute in questo materiale capace di provocare grave inquinamento all’ecosistema.

Con la loro ricerca, gli scienziati Vinodkumar Etacheri e i ricercatori guidati da Vilas Pol, sono riusciti a trasformare questo materiale da imballaggio in micro fogli e nano-particelle di carbonio e li hanno testati come anodi delle batterie all’ioni di litio ricaricabili. Il risultato è stato incredibile. Questi elettrodi sono risultati migliori di quelli attualmente in commercio realizzati in grafite.

Utilizzo di questo materiale porterebbe con sé due vantaggi: da un lato eliminare materiale inquinante riciclandolo al 100%, dell’altro realizzare batterie altamente efficienti. Gli studi sono talmente a buon punto che, molto probabilmente, queste batterie potrebbero arrivare già sul mercato tra meno di due anni.

GUARDA I VIDEO:

GUARDA I VIDEO:
Apr 242019
 

Uno dei più grandi ostacoli alla diffusione dell’auto elettrica, attualmente è il problema dell’autonomia, ossia la durata con carica singola per le batterie montate all’interno di queste autovetture.

Kia E-Niro

Attualmente la Kia E-Niro è l’unica in grado di percorrere 440 km senza la ricarica ma questo è solo un aspetto del problema; l’altro è la diffusione delle colonnine di ricarica e l’impossibilità, quindi, di fare rifornimento tra una tappa e l’altra. Inoltre, quello accaduto ultimamente a una a Tesla, il cui video è diventato virale in rete, cioè l’esplosione dell’autovettura posteggiata in un garage, è il secondo problema legato all’uso delle batterie elettriche per le autovetture. Le batterie al litio hanno, purtroppo, un alto grado di infiammabilità e questo può essere un problema in molti casi soprattutto in caso di incidente o di parcheggio all’interno di un’autorimessa.

Continuamente si legge di innovazioni e di cambiamenti tecnologici che permetteranno di ottenere batterie più efficienti, più durature e soprattutto più sicure. L’ultima innovazione è stata proposta dalla società Svizzera con sede a Basilea, la Innolith la quale è specializzata nella realizzazione di batterie ricaricabili a elettroliti inorganici che, ha affermato in questi giorni di aver sviluppato la prima batteria ricaricabile da 1000 Wh/Kg al mondo.

Prende il nome di Energy Battery e promette di alimentare un veicolo elettrico per oltre 1000 km con una singola ricarica riducendo drasticamente i costi sia per l’assenza di materiali preziosi e costosi e soprattutto per l’elevata densità energetica del sistema. Inoltre, ed è cosa non trascurabile, e la prima batteria al litio non infiammabile destinata a veicoli elettrici.

Inoltre, viene spiegato dal produttore che, la densità all’interno di ogni cella di queste batterie e di gran lunga superiore ad ogni altra batteria in commercio e quindi con grandi prospettive di sviluppo soprattutto l’assenza di sostanze organiche eliminando il problema della sicurezza per questo tipo di batterie.

La Energy Battery sarà disponibile inizialmente per un programma pilota in Germania ma poi, tramite diverse partnership sarà data in licenza ad altre aziende che si occupano di automotive. Pare che il completamento dello sviluppo per la commercializzazione richiederà comunque ancora dai 3 ai 5 anni.

GUARDA I VIDEO:

PUOI LEGGERE ANCHE:
Apr 152019
 

Come era prevedibile, passano i giorni e i mesi e cominciano a vedersi i primi risultati, le prime applicazioni concrete del “wonder material“, il grafene. Per la prima volta un gruppo di ricerca della Columbia University, guidato da Young Duck Kim, è riuscito a realizzare una lampadina a base di grafene la cui luce viene generata da un filamento di dimensione mono atomica. Questo significa che è stata progettata e realizzata la più piccola lampadina mai costruita dall’uomo.

Questo studio apre degli incredibili risvolti dal punto di vista dei dispositivi elettronici e di comunicazione. Lo scopo è quello di implementare fonti di luce infinitesimali all’interno di chip in silicio, cioè quelli utilizzati nei processi di computer, che utilizzino la luce anziché l’elettricità per processare le informazioni il che, comporterebbe un notevole incremento nella velocità e nella quantità di dati trattabile nell’unità di tempo.

Si tratta di un lavoro in collaborazione tra l’università americana e due gruppi accademici coreani il Seoul National University e il Korea Research Institute of Standards and Science che, hanno sviluppato questa nuova tecnologia. In pratica si tratta di filamenti di grafene attaccati ad elettrodi metallici, ma la cosa straordinaria è che non sono appoggiati sul chip di silicio, bensì sospesi al suo interno. Questi filamenti mono-atomici di grafene possono scaldarsi fino a 2500°C di temperatura, la metà di quella della superficie del Sole generando così una luce visibile a occhio nudo nonostante le dimensioni praticamente invisibili della fonte.Finora non era stato possibile raggiungere questi risultati perché nessun materiale di questa dimensione era stato in grado di sopportare tali temperature. Il grafene invece non solo alla capacità di resistere a questo elevatissimo calore e di concentrarlo solo nella parte centrale il foglio senza così  toccare gli elettrodi metallici che potrebbero fondere, ma anche di condurre l’elettricità contemporaneamente. Inoltre il fatto che il grafene sia sospeso e non appoggiato sul materiale, migliora di circa 1000 volte l’efficienza.L’altra cosa incredibile, è che la lunghezza d’onda di questa luce può essere variata in base alla posizione in cui è sospeso il foglio di grafene, permettendo così di regolarne anche l’intensità.

GUARDA I VIDEO:

PUOI LEGGERE ANCHE:
Apr 042019
 

Che gli eliostati potessero servire anche per illuminare gli spazi chiusi, è l’originalissima e vincente idea venuta agli ideatori di Solenica, una start Up tutta italiana che ha realizzato il progetto Lucy.

L’idea è semplicissima, quella di una di uno specchio smart capace di riflettere la luce del sole all’interno degli appartamenti in modo tale da procurare una sufficiente illuminazione a svolgere qualunque tipo di lavoro durante tutte le ore del giorno. Questo comporterà un enorme risparmio sulla bolletta elettrica perché non sarà più necessario accendere le luci.

L’idea è stata proposta dal gruppo sulla piattaforma di crowfunding Indiegogo e speravano di raccogliere 50.000 dollari in 30 giorni. Ma sorprendentemente, in poche ore il risultato è stato superato e in due giorni sono stati raccolti 140.000 dollari. L’idea è nata dalla creatività e ingegno di Mattia Di Stasi 24 anni e Diva Tommei 32 enne ex dottoranda in bioinformatica a Cambridge.

Lucy è uno specchio dal design molto curato, italiano, capace e attraverso l’uso di una speciale elettromeccanica alimentata anch’essa a energia solare di muoversi seguendo la direzione del Sole e riflettendo la luce all’interno degli ambienti in maniera tale da consentire una intensa illuminazione. Basta semplicemente posizionare Lucy all’esterno, in un posto molto soleggiato.

Lucy dispone di uno specchio che ruota ricostruendo la posizione del Sole nel cielo e inseguendolo in ogni momento durante tutte le ore del giorno, riuscendo così a mantenere lo stesso punto sempre illuminato con una intensità pari a cinque lampadine alogene da 100 W ciascuna, quindi, abbondantemente sufficiente per qualunque spazio abitativo.

I giovani fondatori della startup affermano di voler mantenere il progetto all’interno del made in Italy e di non volersi fermarsi a questo prodotto ma di aver già pensato a diverse versioni di Lucy destinate ad interi edifici o addirittura a luoghi all’aperto.

GUARDA I VIDEO:

PUOI LEGGERE ANCHE: