Giu 112021
 
ENERGIA NUCLEARE
Indice Argomenti
1 FISSIONE NUCLEARE
2 LE CENTRALI ELETTRO-NUCLEARI
3 FUSIONE NUCLEARE
4 PRO E CONTRO DELL’ENERGIA NUCLEARE
Mappa MAPPA CONCETTUALE DELL’ARGOMENTO
Video APPROFONDISCI CON I VIDEO
Argomenti correlati
#1 FUKUSHIMA: SIAMO DAVVERO IN PERICOLO?

L’energia nucleare è una forma di energia che deriva da profonde modificazioni della materia.
Più di un secolo fa Albert Einstein scoprì che questa poteva essere trasformata in energia…

…e che questa trasformazione poteva avvenire attraverso 2 differenti processi:

  • la Fissione Nucleare
  • la Fusione Nucleare
FISSIONE o SCISSIONE NUCLEARE

La fissione nucleare o la scissione nucleare, consiste nella disintegrazione del nucleo di un atomo, per mezzo dei neutroni che colpendolo alla velocità della luce, lo spezzano in nuclei più leggeri.
Einstein notò che sommando la massa dei nuclei più piccoli, la somma era inferiore a quella del nucleo originario. Come mai? Questo perché una parte di essa si era trasformata in energia! Infatti, una reazione nucleare, genera luce e calore, e questi sono proprio ottenuti per la trasformazione di parte della materia degli atomi.

Inoltre, se la quantità di materiale fissile è sufficiente, durante la fissione si liberano altri neutroni che vanno a colpire altri nuclei innescando così una reazione a catena.
L’elemento fissile usato nelle centrali è l’uranio 235 che costituisce il combustibile che, una volta inserito nei reattori, svilupperà un enorme quantità di energia.

Durante la fissione, oltre all’energia si ottiene un nuovo materiale fissile non presente in natura chiamato Plutonio.

 TORNA ALL’INDICE

LE CENTRALI ELETTRO-NUCLEARI

L’uomo riesce a realizzare queste reazioni all’interno di grandi strutture il cui scopo è quello di trasformare l’energia prodotta dalla fissione in elettricità, ecco perché prendono il nome di centrali elettro-nucleari.

Il combustibile fissile, l’uranio 235, viene inserito all’interno del reattore o core, chiuso all’interno di una struttura di contenimento affinché le radiazioni mortali prodotte da questa, non si disperdano all’esterno. Qui, avviene una fissione controllata. In pratica, apposite barre di controllo vengono inserite tra le pile di combustibile e abbassate se la reazione diventa troppo rapida o violenta, in modo da rallentarla o spegnerla del tutto in caso di necessità.

L’uranio naturale viene sottoposto ad un processo di macinazione che produce comunemente un materiale in polvere secca di colore giallo, chiamato appunto yellow cake, proprio perché viene confezionato in piccoli cilindri che assomigliano a delle torte gialle.Anche

Il calore prodotto, viene utilizzato per far evaporare dell’acqua all’interno di un generatore di vapore, che viene utilizzata per raffreddare il reattore e per attivare una turbina a vapore la quale trasforma così l’energia termica prodotta in energia di tipo meccanico.

La turbina è collegata ad un alternatore, trasformando così l’energia meccanica in energia elettrica.

Come in ogni centrale elettrica, poi, l’elettricità passa al trasformatore che ne innalza la tensione per il trasferimento sulla rete elettrica attraverso i tralicci e i cavi dell’alta tensione.

 TORNA ALL’INDICE

FUSIONE NUCLEARE

La fusione nucleare è una reazione attraverso la quale i nuclei di due atomi leggeri, deuterio e trizio, si uniscono tra loro, dando come risultato un nuovo elemento chimico chiamato elio.
Anche in questo caso, quando i due nuclei più leggeri si fondono insieme, il nucleo che hanno formato, sarà meno pesante della somma degli altri due. Anche in questo caso la materia mancante si è trasformata in energia termica e luminosa.

Questa reazione, al contrario della fissione, non può ancora essere realizzata perché la condizione per cui i due atomi leggeri si fondano insieme, dipende da una pressione spaventosa e da una temperatura di milioni di gradi, condizioni che si verificano all’interno delle stelle come il nostro Sole o in una reazione nucleare incontrollata come in una bomba all’idrogeno.

 TORNA ALL’INDICE

IL FUTURO DELLA FUSIONE NUCLEARE: IL TOKAMAK

Toro

Per poter sfruttare l’enorme quantità di energia prodotta dalla fusione nucleare, si sta sperimentando il Tokamak, una macchina a forma di “ciambella”, sviluppata in Unione Sovietica negli anni 50’. Il nome un po’ curioso deriva dall’acronimo russo e significa “camera toroidale magnetica”. La forma toroidale (oppure a ciambella) del dispositivo non è stata di certo una scelta a caso, ma è fondamentale per il suo giusto funzionamento, in quanto la forma a ciambella del contenitore impedisce alle particelle di fuoriuscire dalle estremità, muovendosi invece in cerchi continui.

Raffigurazione 3D del Tokamak

Una camera vuota avvolge e protegge lo strato più interno in cui avviene il processo, impedendo l’interazione con le particelle esterne. L’intera struttura è avvolta da bobine magnetiche realizzate con superconduttori che, con la loro capacità di assorbire poca potenza elettrica, generano campi magnetici così potenti da permettere ai laser che bombardano le particelle di raggiungere le temperature adeguate e mantenere coeso il plasma.

Il campo magnetico generato impedisce agli elettroni di urtare contro le pareti, mentre le forze magnetiche addensano il plasma, portando i nuclei caricati positivamente abbastanza vicini da superare le forze elettrostatiche e li costringono a fondersi.

 TORNA ALL’INDICE

PRO E CONTRO DELL’ENERGIA NUCLEARE

Per ora, quando parliamo di energia nucleare ci riferiamo a quella prodotta con il processo di fissione. Produrre energia elettrica attraverso l’energia nucleare presenta notevoli vantaggi, ma porta con se anche alcuni importanti svantaggi. Vediamoli:

PRO

  • da una piccola quantità di uranio si ottiene molta energia elettrica;
  • non essendo basata sulla combustione di risorse fossili o vegetali, non causa l’emissione in atmosfera dei gas responsabili del dell’effetto serra;
  • riduce la dipendenza dall’estero nell’approvvigionamento energetico, in quanto consente di produrre una parte dell’energia elettrica senza dover importare dai paesi produttori, gas, carbone o petrolio.
  • può funzionare ininterrottamente per 40-60 anni. Un periodo di tempo così lungo consente di ammortizzare l’elevato costo iniziale della centrale atomica.

CONTRO

  • dopo il processo di fissione nucleare vengono rilasciati dei rifiuti altamente radioattivi (scorie), che vengono smaltiti dopo tantissimi anni. Solitamente questi rifiuti vengono rinchiusi in depositi sotto terra lontani dallo scorrere delle falde acquifere e controllati dall’esercito perché potrebbero interessare gruppi terroristici per produrre le cosiddette bombe sporche;

  • le centrali nucleari richiedono un maggior livello di sicurezza rispetto ad altre centrali, perché in caso di incidenti, sono quelle che danneggiano di più l’ambiente. Tristemente famosi gli incidenti nelle centrali nucleari di Chernobyl nel 1986 e Fukushima nel 2001.

 TORNA ALL’INDICE

MAPPA CONCETTUALE DELL’ARGOMENTO


 TORNA ALL’INDICE

APPROFONDISCI CON I VIDEO
LA FISSIONE NUCLEARE LA FUSIONE NUCLEARE
Durata: 1:02 Durata: 2:34
VERSO LA FUSIONE NUCLEARE
Durata: 7:42 Durata: 0:00
SCOPRI GLI ALTRI VIDEO SU NUCLEARE

 TORNA ALL’INDICE

ANCHE NOI SCRITTORI
Alunno/i autore/i dell’articolo:
RICCARDO FRANCALANZA – AGNESE CORSARO
Classe e Anno: Argomento di Riferimento:
Terza D – 2020/21 ENERGIA NUCLEARE