Nov 072020
 

Uno dei problemi che affliggono il nostro pianeta, è l’inquinamento atmosferico dovuto all’emissione di gas serra, anidride carbonica, particolati e altre sostanze nocive. Immediatamente ci vengono in mente le grandi industrie pesanti, il traffico urbano o le emissioni domestiche. Esiste, però, un altra grande fonte di inquinamento, meno evidente ma purtroppo sempre importante, le grandi navi oceaniche. Dotate di potenti motori diesel, sono tra i maggiori mezzi inquinanti in circolazione sul pianeta.
Ma una soluzione pare essere alle porte; infatti, un nuovo combustibile che apre nuovi scenari e soprattutto strizza l’occhio all’ambiente e si propone come una soluzione molto più sostenibile rispetto a quelle in uso oggi. Si tratta dell’LNG.
Ma che cos’è l’LNG? Si tratta di un acronimo delle parole inglesi liquefied natural gas ossia gas naturale liquefatto e si ottiene dopo la depurazione del gas naturale estratto dai pozzi. Infatti, al momento in cui viene prelevato dalla natura, il gas è una miscela di idrocarburi composta da metano, etano, propano, acqua, anidride carbonica e azoto per cui deve essere sottoposto ad una operazione di purificazione dagli inquinanti ed essere trasportato ai luoghi di impiego. Di norma, il trasporto avviene attraverso delle condutture chiamata gasdotti, ma quando la distanza è eccessiva, questo avviene attraverso l’impiego di speciali navi chiamate metaniere.

Per consentire un trasporto agevole, il gas viene sottoposto a un’operazione di liquefazione a temperature molto basse circa 160° sotto lo zero. In questo modo il suo volume si riduce di circa 600 essendo così trasportabile in grandi quantità.

Oltre che per l’uso domestico o per la produzione di energia, la scienza sta studiando di impiegare questo tipo di idrocarburo in motori di nuova concezione da implementare sulle grandi navi in via di costruzione in modo da sostituire gli inquinanti motori diesel di quelle attuali.

Questo gas consente di rispettare tutti i rigidi parametri antinquinamento previsti dalle normative, e inoltre, grazie al raffreddamento, la riduzione del suo volume di circa 600 volte lo rende facilmente trasportabile e stoccabile. Pensate che questa miscela gassosa trasformata in sostanza liquida, presenta dei vantaggi ambientali enormi, infatti non emette anidride solforosa, riduce del 25% l’anidride carbonica, taglia dell’85% le emissioni di ossidi di azoto e addirittura del 95% quelle di particolato. I serbatoi di queste nuove grandi navi da crociera potranno essere molto più piccoli e consentire la navigazione senza rifornimento per addirittura 14 giorni consecutivi.

Ad oggi sono state ordinate 118 navi alimentate a LNG, raddoppiando il numero delle navi con questo tipo di alimentazione dal 2014 ad oggi. Alla convention Seatrade Global 2016 di Fort Lauderdale, un dirigente di Wartsila, principale costruttore di motori per navi da crociera, ha dichiarato che, entro il 2025, l’80% delle navi da crociera saranno alimentate a LNG.

GUARDA I VIDEO:

PUOI LEGGERE ANCHE:

Set 282019
 

Si parla sempre più di mobilità, di sostenibilità, di rispetto dell’ambiente e anche le nazioni stanno agendo in questa direzione, soprattutto la Comunità Europea con una serie di interventi volti a limitare al massimo e nel modo più rapido possibile, fenomeni inquinanti.

Diverse sono le tecnologie in ballo per poter sostituire il motore endotermico a benzina o gasolio per intenderci. Ma quale tecnologia si affermerà sul mercato e quando questo cambiamento potrà realmente avvenire?

Le tecnologie in gara per sostituire il motore endotermico, sono due: quelle che utilizzano batterie elettriche e quelle che utilizzano celle a idrogeno. Ma riuscire a capire, qual è la migliore tra le due è piuttosto complesso e in ogni caso, questo, prevede analisi di lungo periodo, cioè proiettate nel tempo quando saranno disponibili non solo un numero sufficiente di autovetture in circolazione, ma anche sistemi di ricarica e rifornimento sufficienti a soddisfare la richiesta.

Gli analisti della società Horváth&Partners hanno tentato di rispondere a questa domanda attraverso la pubblicazione di uno studio intitolato “Automotive Industry 2035 Forecasts for the Future” nel quale si ipotizzano differenti scenari che potrebbero verificarsi nei prossimi anni in base ai dati raccolti che mostrano come l’industria dell’automobile si sta muovendo.

Nello studio, ciò che emerge è che esisteranno due differenti fasi temporali una che durerà fino al 2023 al massimo 2025, catalizzata dagli sforzi dei costruttori per realizzare autovetture a emissioni zero e rispettose dei rigidissimi standard di sicurezza e sostenibilità che, faranno lievitare evidentemente i costi. Una seconda fase, che si concluderà intorno al 2035 in cui le auto di nuova generazione sostituiranno quelle vecchie con motori endotermici per due motivi. Il primo è che queste ultime diverranno più care di quelle elettriche a causa dell’introduzione degli standard Euro7 e della tassazione della CO2 con incremento del costo dei combustibili fossili e dall’altro il progresso della tecnologia che renderà il prezzo delle macchine di nuova generazione molto più basso e competitivo.

Schema auto a motore elettrico

Un altro dei fattori che favoriranno lo sviluppo e la diffusione di queste autovetture, sono i costi in meno che ciascuno di noi dovrà affrontare non soltanto dal punto di vista del carburante la cui differenza è sensibile visto che si calcola un risparmio attuale tra i 40o e i 600 euro di carburante/anno, ma anche il risparmio di manutenzione perché questo tipo di autovettura non ha bisogno di sostituzioni di olii e filtri per cui è soggetta a minori interventi manutentivi.

Schema auto a celle di combustibile

I limiti all’attuale diffusione di queste auto rispetto a quelle attualmente in circolazione è dovuta ad una serie di fattori concatenati. La durata delle batterie, la mancanza di un numero sufficiente di colonnine di ricarica, i tempi di ricarica delle stesse. Inoltre la produzione dell’elettricità di queste auto, oggi, non si può dire assolutamente verde, ma essendo prodotta anche da fonti non rinnovabili è anch’essa fonte di inquinamento. Lo studio ha messo in evidenza che, un’auto elettrica oggi produce meno CO2 di un’auto endotermica solo dopo aver percorso 100.000 km, ma anche questo dato è soggetto a cambiare rapidamente nei prossimi anni.

Lo studio, infine, cerca di analizzare i dati per capire quale, tra le due tecnologie, è la migliore cioè quella che probabilmente avrà maggiore diffusione nell’immediato futuro. Le auto a batteria elettrica hanno una maggiore efficienza globale tra il 70 e l’80%, mentre quelle a idrogeno tra il 25 il 35%. Questo è dovuto ai costi di produzione e trasformazione, nonché nel trasporto dell’energia dalla fonte alle batterie. Si conclude che i vantaggi della cella combustibile vengono dall’autonomia e dalla velocità di rifornimento, ma sono meno efficienti e più costose quindi attualmente per percorrere circa 100 km di strada servono tra i 9 e i 12 euro per un’auto a celle e tra i 2 e i 7 euro per una elettrica. Tutto ovviamente potrà essere cambiato o sovvertito se nuove tecnologie e nuove scoperte modificheranno il panorama attuale da qui al prossimo decennio.

GUARDA I VIDEO:

PUOI LEGGERE ANCHE:
Ott 122018
 

Le celle a combustibile sono dispositivi elettrochimici capaci di convertire l’energia chimica direttamente in energia elettrica. La loro scoperta è del 1839 anche se gli sviluppi maggiori si sono avuti in epoca recente grazie alle missioni spaziali, dove sono state ritenute il miglior sistema per l’alimentazione elettrica a bordo delle navicelle.

Purtroppo la loro affermazione è stata ostacolata da un costo altissimo dovuto all’uso del platino, uno dei metalli preziosi presenti sulla Terra utilizzato in grande quantità in queste batterie come catalizzatore.

Oggi, però, grazie ad uno studio congiunto dell’Università di Stanford e della casa automobilistica tedesca Volkswagen, forse questo ostacolo è stato definitivamente superato.

Le particelle di platino, sono distribuite su una polvere di carbone ma il processo catalitico avviene solo sulla loro superficie rendendo inutile gran parte del materiale utilizzato.

Il processo innovativo sviluppato in questa ricerca, consente di collocare atomi di platino sulla superficie di carbone in particelle molto piccole. In questo modo la quantità di platino utilizzata è molto meno di quella adoperata fino ad oggi abbassando notevolmente i costi migliorando sensibilmente l’efficienza del catalizzatore e la sua resistenza.

La ricerca coinvolge anche la Volkswagen perché impegnata grandemente nello sviluppo di nuove soluzioni per batterie per le auto elettriche.

Da questa ricerca, trarranno vantaggio, secondo i ricercatori, non solo le celle a combustibile, ma anche le batterie convenzionali come quelle a ioni di litio.

Thomas Schladt del Dipartimento di Ricerca del Gruppo Volkswagen, ha evidenziato come questa nuova tecnologia ALD a deposito di strato atomico (atomic layer deposition), porterà i sistemi di produzione di energia ad un altro livello. Infatti, le celle a combustibile, sono ad emissioni zero ed inoltre presentano grandi vantaggi sia rispetto ai motori con batterie elettriche che a quelli a combustione interna classici. I vantaggi derivano dall’efficienza, dall’autonomia e dal tempo di ricarica. Le auto a celle di combustibile sono in tutto e per tutto paragonabili alle auto attuali a combustione interna con il vantaggio, però, di emettere solo acqua e calore. L’abbassamento dei costi e l’aver reso il processo più efficiente dovrebbe portare a una maggiore diffusione e un’affermazione sul mercato di questo sistema di propulsione. I ricercatori, adesso saranno impegnati nel trasferire questi risultati dalla fase sperimentale a quella applicativa.

GUARDA I VIDEO:

PUOI LEGGERE ANCHE:
Ott 082016
 
BES-DSA_icon MAPPA CONCETTUALEFreccia destra
Mappa2_icon
ARGOMENTO INDICATO PER BES/DSAFreccia sinitra2

MolecolaIl METANO è un combustibile fossile e può essere considerato una fonte di energia primaria. E’ un idrocarburo risultato della lenta decomposizione di sostanze organiche in assenza di ossigeno nel sottosuolo. Si presenta sotto forma di gas ed ha una molecola molto semplice formata da 1 atomo di carbonio e 4 atomi di idrogeno; formula chimica CH4. E’ più leggero dell’aria e risulta essere inodore, incolore e insapore. Proprio grazie a questa semplicità molecolare, il metano brucia completamente senza rilasciare sostanze nell’atmosfera e quindi tra gli idrocarburi è quello meno inquinante. E’ considerata una fonte esauribile perché il suo processo di formazione in natura richiede milioni di anni.

Approfondisco: gli idro-carburi  sono composti organici formati esclusivamente da molecole di idrogeno (idro) e carbonio (carburi).

PASSAGGI DI STATO DELL’ENERGIA
Ampolla-icon Arrow Fiamma Arrow spur-gear-icon Arrow Apps-preferences-system-power-management-icon
CHIMICA TERMICA MECCANICA ELETTRICA
FORMAZIONE

Il metano, si trova nel sottosuolo quasi sempre in giacimenti petroliferi, in quantità pari al petrolio o può trovarsi in giacimenti di solo metano intrappolato sotto le rocce magazzino impermeabili.

Schema giacimento gas

La sua localizzazione nelle profondità marine o nel sottosuolo è dovuta allo sprofondamento in ere geologiche molto lontane di sedimento organico (normalmente plancton marino) lentamente ricoperto da detriti, sabbia e strati di terreno. L’azione combinata della pressione e del calore della Terra, in assenza di ossigeno ha fatto si che questi resti organici abbiano pian piano perso ossigeno trasformandosi, nelle porosità delle rocce sedimentarie, in idro-carburi.

RICERCA E TRASPORTO

Anche la ricerca dei pozzi di metano avviene con le stesse tecniche utilizzate per la ricerca del petrolio, ossia studi geologici del suolo, trivellazioni ispettive e carotaggi, sistemi sismografici.

Quando si trova in enormi giacimenti insieme al petrolio, sotto fortissima pressione, nel momento in cui la trivella lo raggiunge, questo fuoriesce con grande violenza. In alcuni casi, il metano non viene utilizzato nelle centrali per la produzione di elettricità, ma viene ripompato nel pozzo di estrazione per favorire, grazie alla pressione che genera, la fuoriuscita di ulteriore petrolio.

Il trasporto del gas alle raffinerie o alle centrali elettriche avviene attraverso speciali condutture chiamate metanodotti o gasdotti, che attraversano infiniti territori dal pozzo fino alla raffineria, o attraverso speciali navi metaniere dotate di doppio scafo e comparti separati per lo stoccaggio del gas.

Gasdotti01

Gasdotto in superficie

Gasdotti2

Gasdotto subacqueo

I metanodotti, possono essere in trincea, ossia invisibili perché nascosti sottoterra oppure in superficie, sospesi a circa un metro di altezza sul terreno e sono costituiti da grandi tubature metalliche. Per consentire al gas di raggiungere la destinazione, il metanodotto necessita di centrali di pompaggio ogni 200 chilometri circa per comprimerlo e spingerlo a percorrere altri chilometri all’interno di queste tubature.

Metaniera

Nave metaniera

IL METANO E L’ITALIA

In Italia la prima trivellazione ad opera dell’Ente Nazionale Idrocarburi (ENI) è datata 1959 nei pressi di Lodi. Successivamente altre perforazioni sono state realizzate a Crotone e nell’Adriatico a largo di Ravenna. Attualmente il metano estratto in Italia rappresenta circa il 15% del consumo di questo combustibile.

La restante parte, viene importata dall’estero tra cui una fetta consistente ci arriva tramite il Trans Mediterranean Pipeline o Transmed, gigantesco gasdotto che partendo da Hassi R’Mel, nel deserto algerino, attraversa la Tunisia per poi inabissarsi nel Mar Mediterraneo e riemergere in Sicilia nei pressi di Mazara del Vallo. Da qui risale lungo tutto lo stivale fino a Minerbio dove viene stoccato in una delle più grandi centrali europee. In tutto un percorso di circa 2.200 chilometri di cui 380 sommersi sotto il Canale di Sicilia. La parte italiana è di proprietà di SNAM Rete Gas.

Transmed

In viola il tracciato del TransMed italiano

CENTRALE A TURBO-GAS

Una centrale elettrica a turbogas serve a generare energia elettrica bruciando metano all’interno di un motore a combustione interna turbo-espansore. Un compressore inietta nella camera di combustione ossigeno preso dall’esterno in modo che al suo interno avvenga la combustione del gas generando energia termica ad alta temperatura. Il calore spinge le pale della turbina a vapore in modo che l’energia termica venga trasformata in energia meccanica. L’asse della turbina è collegato ad un generatore elettrico, l’alternatore.

CENTRALE TURBOGAS

METANO PRO E CONTRO

Il metano come detto è tra i combustibili fossili il più green perché non rilascia sostanze inquinanti nell’atmosfera per cui il suo uso si è pian piano sempre più diffuso.

Il processo di estrazione, come quello del petrolio, è ugualmente inquinante e soprattutto il metano è responsabile per il 18% dell’effetto serra mondiale perché da quando si è iniziato a farne largo uso la sua concentrazione è aumentata del 150% nell’atmosfera contribuendo all’aumento delle temperature.

GUARDA I VIDEO:

PUOI LEGGERE ANCHE:
  1. Io studio: ENERGIA IDROELETTRICA
  2. Io studio: ENERGIA EOLICA
  3. Io studio: ENERGIA DAGLI OCEANI
SCARICA L’ARTICOLO:
Apr 142016
 
ANCHE NOI SCRITTORI
Autore/i:
M. GUELI – G. FONTI – E. VITALIANO – T. GIUFFRIDA
CLASSE e ANNO: Argomento:
TERZA H – 2015-16 RIFIUTI

Prefazione a cura del prof. Betto

Dopo diverso tempo riprendo a pubblicare lavori e approfondimenti realizzati dai miei alunni. Sono lavori interessanti, curati graficamente e comunque espressione delle loro capacità e della loro passione. Supervisionati dal sottoscritto durante le fasi di lavorazione, evidenziano doti narrative e capacità interpretative non indifferenti, raggiungendo traguardi a volte sorprendenti. Vi presento oggi un lavoro sintetico ma accurato, espressione di un grande lavoro di equipe. Buona lettura.

BIOMASSE

Per biomassa si intende ogni sostanza organica che deriva direttamente o indirettamente dalla fotosintesi clorofilliana. La maggior parte delle biomasse è di origine vegetale; solo circa il 10% è di origine animale. La biomassa vegetale viene prodotta utilizzando l’energia solare per mezzo, come detto, della fotosintesi clorofilliana e si presenta in più forme: in foreste, boschi, colture o dalla componente organica che proviene dalla raccolta differenziata urbana.

Biomassa01

STORIA

Il fuoco, è stata indiscutibilmente la più importante invenzione nella storia dell’uomo ed è stato scoperto grazie alla combustione accidentale del legno. L’invenzione della macchina a vapore, ci ha consentito, poi, di ottenere energia meccanica dalla sua combustione. Solo di recente le prospettive d’esaurimento dei carburanti fossili e l’inquinamento prodotto dalla loro combustione, hanno spinto l’uomo a “riscoprire” l’utilità del legno e dei rifiuti organici (biomassa) come fonti energetiche.

Biomassa05

CLASSIFICAZIONE

Le biomasse possono essere classificate in base a 3 diversi criteri:

  • il contenuto di acqua (biomassa fresca o secca);
  • l’origine (vegetale o animale);
  • la vitalità (presenza di organismi morti o vivi al suo interno).

Oppure a seconda della loro origine si possono distinguere in:

  • Fitomassa: la biomassa proviene da piante;
  • Zoomassa: la biomassa proviene da animali;
  • Biomassa microbica: la biomassa proveniente da microrganismi.

Si possono distinguere anche in:

  • Materiale vegetale da coltivazioni dedicate, biomassa da miscanto, biomassa da sorgo;
  • Materiale vegetale da coltivazioni non dedicate e da prodotti agricoli: vinacce (residuo dalla lavorazione dell’uva), lolla di riso (sottoprodotto derivante dalla lavorazione dei cereali), nocciolino (prodotto ottenuto dalla lavorazione meccanica delle olive );
  • Produzione direttamente da bosco: Interventi selvicolturali, manutenzione forestale, potatura;
  • Sansa di oliva dislocata o biomassa liquida: olio di palma, olio di colza.
COMPOSIZIONE

BIOMASSA_Scroll

La biomassa è formata principalmente da organismi vivi o morti, che a loro volta sono costituiti da una varietà di composti diversi. I composti quantitativamente più importanti dal punto di vista energetico possono essere raggruppati in tre classi:

  • Carboidrati: rappresentano la maggior parte della biomassa e sono costituiti da carbonio, ossigeno e idrogeno. Essi possono essere monosaccaridi come il glucosio e il fruttosio, disaccaridi come il saccarosio, o polisaccaridi quali l’amido e la cellulosa;
  • Grassi;
  • Proteine.
UTILIZZO

Gli impieghi finali delle biomasse sono orientati verso la produzione di energia termica, (acqua calda, riscaldamento, utenze industriali), energia elettrica e biocarburanti.
Alcuni di questi impieghi utilizzano direttamente la biomassa allo stato naturale, senza modifiche alla sua struttura originaria, altri invece, richiedono dei “processi di trasformazione complessi” della biomassa per consentire una maggiore versatilità del suo utilizzo energetico rivolto in particolare (ma non solo) ad alcune applicazioni tecnologiche di tipo “convenzionale” (stufe, caldaie ecc).

CENTRALI DI CONVERSIONE

biomassa02

Le taglie delle centrali possono variare dalle medie centrali termoelettriche alimentate da biomasse solide, solitamente da cippato di legno, sino ai piccoli gruppi elettrogeni alimentati da biocombustibili liquidi. Le tipologie impiantistiche più diffuse sono le seguenti: impianti tradizionali con forno di combustione della biomassa solida, caldaia che alimenta una turbina a vapore accoppiata ad un generatore;  impianti con turbina a gas alimentata dal syngas ottenuto dalla gassificazione di biomasse;  impianti a ciclo combinato con turbina a vapore e turbina a gas; impianti termoelettrici ibridi, che utilizzano biomasse e fonti convenzionali;  impianti, alimentati da biomasse liquide, costituiti da motori accoppiati a generatori.

GUARDA I VIDEO:

PUOI LEGGERE ANCHE: