Set 012024
 

Il traffico urbano e il conseguente innalzamento dei tassi di inquinamento stanno spingendo sempre più società legate all’automotive e all’aviazione a cercare soluzioni innovative, sostenibili e adatte agli spazi urbani.

Abbiamo già parlato di una nuova categoria dei mezzi di trasporto noti con la sigla eVTOL (electric vertical take-off and landing): mezzi alimentati elettricamente capaci di decollare e atterrare verticalmente come fossero elicotteri. (Leggi articolo Taxi aerei)

L’ultima novità in questo settore arriva da una società statunitense che ha sviluppato un veicolo elettrico a decollo verticale in grado di compiere lunghe distanze senza soste e alimentato esclusivamente con propulsori misti idrogeno-elettrico.

Il veicolo ha svolto il suo primo test…(se vuoi continuare ad approfondire, clicca sull’immagine qui sotto per leggere il resto dell’articolo)


Clicca sull’icona qui sotto per accedere al blog della Lattes “ilTECNOlogico” a cura del prof. Betto

Set 282019
 

Si parla sempre più di mobilità, di sostenibilità, di rispetto dell’ambiente e anche le nazioni stanno agendo in questa direzione, soprattutto la Comunità Europea con una serie di interventi volti a limitare al massimo e nel modo più rapido possibile, fenomeni inquinanti.

Diverse sono le tecnologie in ballo per poter sostituire il motore endotermico a benzina o gasolio per intenderci. Ma quale tecnologia si affermerà sul mercato e quando questo cambiamento potrà realmente avvenire?

Le tecnologie in gara per sostituire il motore endotermico, sono due: quelle che utilizzano batterie elettriche e quelle che utilizzano celle a idrogeno. Ma riuscire a capire, qual è la migliore tra le due è piuttosto complesso e in ogni caso, questo, prevede analisi di lungo periodo, cioè proiettate nel tempo quando saranno disponibili non solo un numero sufficiente di autovetture in circolazione, ma anche sistemi di ricarica e rifornimento sufficienti a soddisfare la richiesta.

Gli analisti della società Horváth&Partners hanno tentato di rispondere a questa domanda attraverso la pubblicazione di uno studio intitolato “Automotive Industry 2035 Forecasts for the Future” nel quale si ipotizzano differenti scenari che potrebbero verificarsi nei prossimi anni in base ai dati raccolti che mostrano come l’industria dell’automobile si sta muovendo.

Nello studio, ciò che emerge è che esisteranno due differenti fasi temporali una che durerà fino al 2023 al massimo 2025, catalizzata dagli sforzi dei costruttori per realizzare autovetture a emissioni zero e rispettose dei rigidissimi standard di sicurezza e sostenibilità che, faranno lievitare evidentemente i costi. Una seconda fase, che si concluderà intorno al 2035 in cui le auto di nuova generazione sostituiranno quelle vecchie con motori endotermici per due motivi. Il primo è che queste ultime diverranno più care di quelle elettriche a causa dell’introduzione degli standard Euro7 e della tassazione della CO2 con incremento del costo dei combustibili fossili e dall’altro il progresso della tecnologia che renderà il prezzo delle macchine di nuova generazione molto più basso e competitivo.

Schema auto a motore elettrico

Un altro dei fattori che favoriranno lo sviluppo e la diffusione di queste autovetture, sono i costi in meno che ciascuno di noi dovrà affrontare non soltanto dal punto di vista del carburante la cui differenza è sensibile visto che si calcola un risparmio attuale tra i 40o e i 600 euro di carburante/anno, ma anche il risparmio di manutenzione perché questo tipo di autovettura non ha bisogno di sostituzioni di olii e filtri per cui è soggetta a minori interventi manutentivi.

Schema auto a celle di combustibile

I limiti all’attuale diffusione di queste auto rispetto a quelle attualmente in circolazione è dovuta ad una serie di fattori concatenati. La durata delle batterie, la mancanza di un numero sufficiente di colonnine di ricarica, i tempi di ricarica delle stesse. Inoltre la produzione dell’elettricità di queste auto, oggi, non si può dire assolutamente verde, ma essendo prodotta anche da fonti non rinnovabili è anch’essa fonte di inquinamento. Lo studio ha messo in evidenza che, un’auto elettrica oggi produce meno CO2 di un’auto endotermica solo dopo aver percorso 100.000 km, ma anche questo dato è soggetto a cambiare rapidamente nei prossimi anni.

Lo studio, infine, cerca di analizzare i dati per capire quale, tra le due tecnologie, è la migliore cioè quella che probabilmente avrà maggiore diffusione nell’immediato futuro. Le auto a batteria elettrica hanno una maggiore efficienza globale tra il 70 e l’80%, mentre quelle a idrogeno tra il 25 il 35%. Questo è dovuto ai costi di produzione e trasformazione, nonché nel trasporto dell’energia dalla fonte alle batterie. Si conclude che i vantaggi della cella combustibile vengono dall’autonomia e dalla velocità di rifornimento, ma sono meno efficienti e più costose quindi attualmente per percorrere circa 100 km di strada servono tra i 9 e i 12 euro per un’auto a celle e tra i 2 e i 7 euro per una elettrica. Tutto ovviamente potrà essere cambiato o sovvertito se nuove tecnologie e nuove scoperte modificheranno il panorama attuale da qui al prossimo decennio.

GUARDA I VIDEO:

PUOI LEGGERE ANCHE:
Mar 012019
 

Anche il trasporto su rotaia comincia ad aggiornarsi nella visione smart ed eco-compatibile come già accaduto per quanto riguarda le autovetture. Infatti, dal 1 marzo in Italia sono a partiti gli eco bonus e l’eco-tassa per favorire il cambiamento in direzione di autovetture meno inquinanti dell’intero parco auto nazionale. Come dicevo, anche il trasporto ferroviario grazie alla francese Alstom, sta vivendo un momento di passaggio. Si chiama Coradia iLint ed è un treno ad idrogeno ad emissioni zero, che rilascia nell’atmosfera solo vapore acqueo e condensa, quindi senza alcun inquinante e senza alcun impatto sull’ambiente. Oggi, il trasporto su rotaia è già quello più ecologico, ma questo non basta. Coradia iLint porta l’attenzione verso l’ambiente a un altro livello.

Questo treno è capace di trasportare fino a 300 passeggeri, 150 posti in piedi e 150 posti seduti e può fare circa 800 km con un pieno di idrogeno e raggiungere la discreta velocità di 140 km/h. Questa sua autonomia e velocità lo configurano come la scelta ideale per sostituire dei treni regionali veloci. In Italia la prima regione ad ospitare questo treno ad idrogeno sarà la Toscana  mettendo in deposito i vecchi treni diesel rumorosi ed inquinanti.

Ovviamente questi nuovi treni saranno utilizzati su linee non elettrificate, come ad esempio la Siena-Chiusi e la Siena-Empoli. La Toscana da questo punto di vista è una regione pioniera e all’avanguardia rispetto anche alle grandi nazioni europee.

Già da tempo la Toscana aveva pubblicato un bando nel quale ricercava progetti e idee per creare una mobilità a impatto zero compresa la filiera per l’approvvigionamento e le infrastrutture pensate secondo questa visione. Per ora è presente solo il progetto di Alstom, ma altri concorrenti presto compariranno per partecipare a questa interessante gara. La ditta francese ha già fatto partire un progetto pilota in Germania che ha permesso di alcuni stati della nazione di dotarsi di primo modello di treno ad idrogeno. Questo ha già lasciato la stazione nello scorso mese di dicembre e presto sarà affiancato da altri 14 treni a celle di combustibile.

I treni idrogeno rappresentano una grande opportunità sia per quanto riguarda le regioni ma anche per quanto riguarda le nazioni e adesso si aspetta una direttiva specifica da parte della Comunità Europea.

GUARDA I VIDEO:

Ott 122018
 

Le celle a combustibile sono dispositivi elettrochimici capaci di convertire l’energia chimica direttamente in energia elettrica. La loro scoperta è del 1839 anche se gli sviluppi maggiori si sono avuti in epoca recente grazie alle missioni spaziali, dove sono state ritenute il miglior sistema per l’alimentazione elettrica a bordo delle navicelle.

Purtroppo la loro affermazione è stata ostacolata da un costo altissimo dovuto all’uso del platino, uno dei metalli preziosi presenti sulla Terra utilizzato in grande quantità in queste batterie come catalizzatore.

Oggi, però, grazie ad uno studio congiunto dell’Università di Stanford e della casa automobilistica tedesca Volkswagen, forse questo ostacolo è stato definitivamente superato.

Le particelle di platino, sono distribuite su una polvere di carbone ma il processo catalitico avviene solo sulla loro superficie rendendo inutile gran parte del materiale utilizzato.

Il processo innovativo sviluppato in questa ricerca, consente di collocare atomi di platino sulla superficie di carbone in particelle molto piccole. In questo modo la quantità di platino utilizzata è molto meno di quella adoperata fino ad oggi abbassando notevolmente i costi migliorando sensibilmente l’efficienza del catalizzatore e la sua resistenza.

La ricerca coinvolge anche la Volkswagen perché impegnata grandemente nello sviluppo di nuove soluzioni per batterie per le auto elettriche.

Da questa ricerca, trarranno vantaggio, secondo i ricercatori, non solo le celle a combustibile, ma anche le batterie convenzionali come quelle a ioni di litio.

Thomas Schladt del Dipartimento di Ricerca del Gruppo Volkswagen, ha evidenziato come questa nuova tecnologia ALD a deposito di strato atomico (atomic layer deposition), porterà i sistemi di produzione di energia ad un altro livello. Infatti, le celle a combustibile, sono ad emissioni zero ed inoltre presentano grandi vantaggi sia rispetto ai motori con batterie elettriche che a quelli a combustione interna classici. I vantaggi derivano dall’efficienza, dall’autonomia e dal tempo di ricarica. Le auto a celle di combustibile sono in tutto e per tutto paragonabili alle auto attuali a combustione interna con il vantaggio, però, di emettere solo acqua e calore. L’abbassamento dei costi e l’aver reso il processo più efficiente dovrebbe portare a una maggiore diffusione e un’affermazione sul mercato di questo sistema di propulsione. I ricercatori, adesso saranno impegnati nel trasferire questi risultati dalla fase sperimentale a quella applicativa.

GUARDA I VIDEO:

PUOI LEGGERE ANCHE:
Lug 152018
 

Che l’idrogeno consenta concentrazioni di energia maggiori della benzina o del gasolio, è noto, ma il problema è che la sua estrazione comporta ancora costi elevati e grossi problemi per la sicurezza. Infatti, l’idrogeno per poter essere utilizzato, deve essere compresso allo stato liquido con enormi rischi di esplosione e processi molto costosi, fattori che hanno rallentato se non fermato del tutto lo sviluppo delle auto dotate di questo tipo di alimentazione.

Arriva adesso dalla Svizzera, dalla società GRT group e dal Politecnico di Losanna, una soluzione denominata HyForm-PemFc, che sfrutta l’acido formico per l’estrazione dell’idrogeno. L’acido formico è una concentrazione di idrogeno e anidride carbonica e rispetto a tanti altri componenti presenta una maggiore facilità nell’estrazione e nello stoccaggio dell’idrogeno.

Molti hanno tentato questa strada, ma per la prima volta, l’HyForm-PemFc, ha consentito di raggiungere elevati livelli di efficienza. La macchina creata in Svizzera consente già adesso di produrre circa 7 mila kilowatt all’ora di energia con un’efficienza del 45%, valore che fa ben sperare nelle auto alimentate all’idrogeno, perché questo sistema consente di produrne di nuovo durante il suo uso permettendo la realizzazione di auto totalmente green e autosufficienti all’infinito.

Il sistema del GRT Group, consente di trasformare l’acido formico in idrogeno utilizzando basse temperature e con dispendio di energia minimo.

La batteria così realizzata permette la fornitura di energia, sia per uso industriale che domestico, per lunghi periodi anche in zone isolate e desertiche, senza dover predisporre centrali o altri sistemi di alimentazione. Il sistema consente, inoltre, l’accumulo di energia per usi in altri momenti.

HyForm-PemFc è costituita da due parti principali: un reformer di idrogeno HyForm e una pila a combustibile chiamata PemFc. Il catalizzatore per estrarre l’idrogeno è a base di rutenio, un materiale molto costoso, per cui gli scienziati stanno cercando un sostituto meno caro a questo componente.

Grazie a questo sistema, l’estrazione dell’idrogeno avviene in maniera sostenibile, la pila è al 100% ecologica, silenziosa, emette gas puliti, non emette anidride carbonica, ne particolato e neppure ossidi di azoto. Inoltre, ha ridotte necessità di manutenzione, ha una tecnologia scalabile per cui può essere utilizzata dalla semplice utenza domestica a più complessi e onerosi, in termini di energia, impianti industriali. Non necessita di connessioni a reti elettriche per cui può essere utilizzata anche in luoghi remoti e utilizza appunto l’acido formico che è facile da stoccare, trasportare e maneggiare e si può produrre da fonti sostenibili presenti in enorme quantità nel mondo.

GUARDA I VIDEO:

PUOI LEGGERE ANCHE:
Ago 222017
 

In un’epoca in cui si parla sempre più spesso di energie alternative ai combustibili fossili, sia in termini di costo, che ambientali, che di durata, l’anchorman Jamie Hyneman, autore e conduttore della nota serie televisiva MythBusters miti da sfatare, ha realizzato un impianto pilota  di quello che è noto come progetto SOLETAIR.

SOLETAIR01

Di cosa si tratta? Del primo sistema in grado di produrre combustibili fossili liquidi a partire da energie pulite. Il progetto SOLETAIR, ideato dalla INERATEC è stato in grado di produrre circa 200 litri di carburante sintetico utilizzando solo energia solare, anidride carbonica estratta dall’aria e idrogeno ottenuto dalla dissociazione dell’acqua ottenuta, anche questa, con l’energia solare.

SOLETAIR03La maggior parte di noi sanno che, i combustibili fossili sono composti da idro-carburi, ossia molecole formate da idrogeno e carbonio. Ad esempio il metano che si presenta in natura allo stato gassoso è composto da una molecola molto semplice che ha formula CH4. Il carbonio è presente nell’anidride carbonica e l’idrogeno nell’acqua.

SOLETAIR02

Il sistema SOLETAIR, è costituito da un semplice container facilmente trasportabile e installabile ovunque, in grado di produrre i più comuni idrocarburi come benzina, gasolio o metano, ma anche molecole diverse come quelle necessarie per la produzione di materie plastiche.

L’impianto è in grado di produrre, da queste semplici materie prime, circa 80 litri di benzina al giorno. Inoltre, è modulare, ossia consente il collegamento di più container per ottenere un impianto la cui produzione soddisfi le esigenze del contesto e il processo di sintesi è ottimizzato per sviluppare il minor calore possibile e per realizzare i carburanti con le migliori proprietà.

GUARDA I VIDEO:
SOLETAIR04

Dal sito: http://www.neocarbonenergy.fi/soletair/

PUOI LEGGERE ANCHE:
Nov 212011
 
Articolo scritto da un alunno della 3D/2012
Claudia Calanna, Francesco Trovato Manuncola

La fusione nucleare fredda, detta comunemente fusione fredda o fusione a freddo, oppure nella forma inglese di cold fusion (CF) è un nome attribuito a reazioni di natura nucleare, che si produrrebbero a pressioni e a temperature molto minori di quelle necessarie per ottenere la fusione nucleare “calda”, per la quale sono invece necessarie temperature dell’ordine del milione di gradi.

Il termine fusione fredda (“cold fusion”) fu coniato nel 1986 da Paul Palmer, della Brigham Young University, durante una ricerca di geo-fusione sulla possibilità di esistenza di fenomeni di fusione all’interno dei nuclei planetari.

La fusione nucleare a freddo, deriva da quella “calda” che, consiste nel fondere 2 atomi leggeri (due isotopi dell’idrogeno: deuterio e trizio) per formarne uno più pesante elio.

Processo di Fusione a Caldo

Il processo è analogo a quello che avviene nel Sole e nelle stelle e può teoricamente essere riprodotto artificialmente anche sulla Terra. Per far sì che la fusione avvenga, però, sono necessarie temperature elevatissime (milioni di gradi) che ancora oggi è quasi impossibile raggiungere. Dalla fusione nucleare si ottiene un’enorme quantità di energia: infatti, una volta che i due atomi si fondono, la loro massa non è pari alla somma delle masse dei due nuclei, ma minore. La differenza tra la somma delle masse di partenza e la massa finale si è convertita in energia secondo la legge di Einstein (E=mC2) dove E rappresenta l’energia, m la massa e Cuna costante, la velocità della luce pari a circa 300.000 km/s.

La possibilità teorica che queste reazioni possano avvenire a freddo è controversa. Secondo i sostenitori delle teorie che permetterebbero tale fenomeno, è necessario avvicinare i nuclei atomici di deuterio e trizio a distanze tali da vincere la reciproca forza di repulsione dei nuclei. Tuttavia, diversamente dalle reazioni di fusione termonucleare “calda”, essi affermano che si può raggiungere lo stesso risultato spendendo molta meno energia, grazie allo sfruttamento di un catalizzatore, come il palladio.

Video1

http://www.youtube.com/watch?v=e-oROrwpX2I&w=560&h=420&rel=0

L’ESPERIENZA ITALIANA

Anche in Italia gli studi in merito fervono e i risultati non mancano. Infatti, il 28 ottobre scorso Andrea Rossi ha mantenuto la prima delle sue promesse. In un container alla periferia di Bologna, l’ingegnere inventore della nuova fusione fredda italiana, ha presentato una mini centrale termica da un megawatt, apparentemente funzionante. È composta da 107 E-Cat (“Energy Catalyzer”), cioè catalizzatore di energia, il misterioso apparato che è il cuore della sua macchina e che consente di produrre, fino a 27 kW termici, attraverso una reazione di fusione nucleare (diversa dalla fissione delle tradizionali centrali nucleari) tra nichel e idrogeno, SENZA RADIAZIONI O SCORIE.

È davvero la soluzione dei tanti problemi energetici del pianeta, come qualcuno pensa?

Le prove non sono ancora sufficienti. Anche se la cosiddetta LENR, “Reazioni nucleari a debole energia”, e il fenomeno su cui è basata, ha ormai molti riscontri: in fenomeni come la cavitazione, il plasma elettrolitico o la sonoluminescenza.

_____________________________

TOKAMACK (prof. BETTO)

Un tokamak è una macchina di forma toroidale che, attraverso il confinamento magnetico di isotopi di idrogeno allo stato di plasma, crea le condizioni affinché si verifichi, al suo interno, la fusione termonucleare allo scopo di estrarne l’energia prodotta. (Wikipedia).

Schema del Tokamack

L’idea è quella di realizzare un campo magnetico ad anello intorno a una forma geometrica a ciambella che impedisce alle particelle di uscire restando così confinate all’interno dello spazio magnetico. Il campo magnetico ad anello viene chiamato in linguaggio tecnico campo toroidale.

In un tokamak, come condizione iniziale viene creato un vuoto spinto o ultraspinto, mediante apposite pompe a vuoto. L’accensione della corrente di plasma nel contenitore toroidale avviene in tre tempi:

  1. si immette corrente nelle bobine di campo toroidale;
  2. viene immessa una piccolissima quantità di gas (generalmente una miscela di deuterio e trizio) di cui si vogliano studiare le proprietà.
  3. si immette corrente nel solenoide centrale, che occupa il buco centrale del toro, creando un flusso nel nucleo del Tokamak: esso costituisce il circuito primario di un trasformatore, di cui il toro costituisce il circuito secondario;

Gli atomi neutri vengono ionizzati, si crea una scarica con elettroni via via più numerosi per effetto degli urti fra elettroni e atomi neutri. Il gas non è più neutro, ma è diventato plasma: a questo punto la corrente elettrica, per effetto Joule, riscalda il plasma a temperature anche molto elevate (qualche milione di gradi).

La speranza è quella di poter estrarre energia da fusione nucleare, senza che questa rilasci scorie radioattive, né sia passibile di esplosioni o fughe di radiazione e in tal senso è un’energia completamente “pulita”.

Video1

http://www.youtube.com/watch?v=bA9r1UWwQlU&feature=related&w=560&h=420&rel=0